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1. Introduction and main results

Digraphs in this paper allow loops but do not allow multiple arcs unless otherwise stated. We follow the terminology
in [1,2]. The number of vertices in a digraph is called its order and the number of arcs its size. For digraphs, cycles and walks
will mean directed cycles and directed walks respectively.

For a given positive integer n, let ® (n) denote the set of digraphs of order n in which any two walks with the same initial
vertex and the same terminal vertex have distinct lengths. Thus, for a digraph D on the vertices 1, 2, ..., n, D € ®(n) ifand
only if for every pair of vertices i, j and for every positive integer k there is at most one walk of length k from i to j. Let 6 (n)
denote the maximum size of a digraph in ® (n).

We consider the following problem.

Problem 1. For a given positive integer n, determine 6 (n) and determine the digraphs in ® (n) that attain the size 6 (n).

The motivation for studying Problem 1 is to explore the relation between the size and the walks of a digraph. Intuitively
6(n) cannot be very large compared with n?, while the structure of the extremal digraphs attaining 6 (n) seems unclear.
Recall that a square upper triangular matrix is called strict if its diagonal entries are zero. Throughout we denote by J; ; the
r x t matrix with each entry equal to 1 and abbreviate J; ; as J;. Our solution to Problem 1 is contained in the following main
result.

Theorem 1. Let n be a positive integer. Then

1 2
w if nis odd,
oM =12
2 if niseven.
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Fig. 1. The extremal loopless digraphs of order 5.

A digraph D € © (n) has size 0 (n) if and only if the adjacency matrix of D is permutation similar to

(U E .]r,t)
0 P st (1)
0 0 O

or its transpose, where P is a permutation matrix and it does appear, U is a strictly upper triangular matrix, there is exactly one
entry lineachrowof (U E),t = (n— 1)/2if nisoddandt = n/2 — 1or n/2 if nis even.

The corresponding theorem on loopless digraphs follows from Theorem 1 immediately: For n > 2 the maximum size
remains 6 (n) and the extremal digraphs attaining 6 (n) are those whose adjacency matrices are permutation similar to the
matrix in (1) or its transpose with the additional condition that P has zero diagonal entries. The four extremal loopless
digraphs of order 5 are shown in Fig. 1.

Denote by My, »{0, 1} the set of m x n 0-1 matrices, and abbreviate M, ,{0, 1} as M,{0, 1}. For a given positive integer n,
denote

I'(n) = {A € Mp{0, 1}|A" € M,{0, 1}for every positive integer k}

and denote by f (A) the number of 1’s in a matrix A. Define y (n) = max{f(A)|A € I"'(n)}.

It is well known [2, p. 72] that for A € M,{0, 1} and a given positive integer k, AX € M,{0, 1} if and only if for every pair
of vertices i, j (not necessarily distinct) there is at most one walk of length k from i to j in the digraph of A. Thus, considering
the adjacency matrix of a digraph we see that Problem 1 is equivalent to the following

Problem 2. For a given positive integer n, determine y (n) and determine the matrices in I" (n) that attain y (n).

The solution to Problem 2 is the following equivalent matrix version of Theorem 1:

Theorem 2. Let n be a positive integer. Then

1 2
w if nisodd,
YW =1nmy2
———— if niseven.
4
For amatrixA € I"(n), f(A) = y(n) if and only if A is permutation similar to

U E
0 P Jsr (2)
0 0 O

or its transpose, where P is a permutation matrix and it does appear, U is a strictly upper triangular matrix, there is exactly one
entry 1ineachrowof (U E),t = (n— 1)/2if nisoddandt = n/2 — 1or n/2 if nis even.

We will prove Theorem 2 in Section 2. A related problem with a fixed length of walks is studied in [3,5].
2. Proof of Theorem 2

Wi,
To prove Theorem 2 we need several lemmas. Denote the digraph of A € M, {0, 1} by D(A). Use the notation i d—J> jto
ij
indicate that the walk Wj; from i to j is of length dj;. If there is a walk Wj; from i to j of length d;; and a walk W from j to k of

o Wy Wik
length dj,, we write i —>d j — k, and so on.
ij 'k

Lemma 3. Let D € ®(n) withn > 2. Then D is strongly connected if and only if D is a cycle.

Proof. If D is a cycle, then it is clearly strongly connected. Conversely suppose D € ©®(n) is strongly connected. To prove
that D is a cycle it suffices to show that the outdegree of each vertex of D is 1. Since D is strongly connected, the outdegree
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