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a b s t r a c t

Weuse discreteMorse theory to determine theMöbius function of generalized factor order.
Ordinary factor order on the Kleene closure A∗ of a set A is the partial order defined by
letting u ≤ w if w contains u as a subsequence of consecutive letters. Generalized factor
order takes into account a partial order PA on the alphabet A, that is, u ≤ w whenever w
contains a subsequence w(i + 1) · · · w(i + |u|) such that for each j, u(j) ≤ w(i + j) in
A. Using Babson and Hersh’s application of Robin Forman’s discrete Morse theory to poset
order complexes, we are able to give a recursive formula for the Möbius function in the
case where each element of A covers a unique letter in PA.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Möbius function of ordinary factor order was determined by Björner [2]. Having reproved his formula using discrete
Morse theory (see [7]), we wished to investigate whether this result would generalize to a wider class of posets. In this
paper, we determine the formula for the Möbius function when factor order is generalized to include a partial ordering P
of letters, provided each letter covers a unique element in P . We also show the formula we obtain is a generalization of
Björner’s formula. Since it is clear our formula would have been nearly impossible to discover using other techniques of
investigating Möbius functions, this paper illustrates the ability of discrete Morse theory to simplify complex combinatorial
problems of this nature.

We begin with a brief introduction to ordinary factor order. Let A be any set. The Kleene closure, A∗, is the set of all finite
length words over A. So if w is a word and w(i) is the ith letter in w, then

A∗
= {w = w(1) · · · w(n) : 0 ≤ n < ∞ and w(i) ∈ A for all i}.

The length of w, denoted |w|, is the number of letters in w. Ordinary factor order on A∗ is the partial order on A∗ defined
by letting u ≤ w if w contains a subsequence of consecutive letters w(i + 1) · · · w(i + n) such that u(j) = w(i + j) for
1 ≤ j ≤ n = |u|. When u ≤ w, we call u a factor of w. A word u is flat if u(1) = · · · = u(n), where n = |u|.

A prefix of a word w ∈ A∗ is a factor of w that includes the first letter of w. Similarly, a suffix of w is a factor of w that
contains the last letter of w. A prefix or suffix is proper if it is not equal to w. Define the outer word o(w) of w to be the
longest factor that appears as both a proper prefix and suffix in w. Notice that o(w) can be the empty word. Define the inner
word i(w) of w to be the factor i(w) = w(2) · · · w(n − 1), where n = |w|.

The following theorem of Björner gives a formula for the Möbius function in ordinary factor order.

Theorem 1.1 ([2]). In ordinary factor order, if u ≤ w then

µ(u, w) =


µ(u, o(w)) if |w| − |u| > 2 and u ≤ o(w) ≰ i(w),
1 if |w| − |u| = 2, w is not flat, and u = o(w) or u = i(w),

(−1)|w|−|u| if |w| − |u| < 2,
0 otherwise.
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Babson and Hersh developed a useful tool for investigating Möbius functions through the maximal chains of an
interval [1]. Their result gives a way of applying Forman’s discrete version of Morse theory [3] to partially ordered sets.
For brevity, we are only going to state the minimum number of definitions to apply this theorem. A reader who is interested
in learning more about discrete Morse theory is encouraged to begin with Robin Forman’s outstanding introduction to the
topic [4].

Let P be any poset. The notation y → xwill indicate that y covers x in P . Let C = (z0 → · · · → zn) be a chain in P . Notice
that z0 is themaximum element in this chain and zn is theminimum element, so that each step in the chain is a step down in
the poset. Since each pair of adjacent elements are related by a cover, C is called a saturated chain. It will often be useful for
us to think of the chain C as a subset of the poset P . For example, since a maximal chain is maximal under set containment,
C is maximal chain in P if and only if z0 is a maximal element of P and zn is a minimal element of P .

Define the closed interval of a chain C from zi to zj to be the chain C[zi, zj] = (zi → · · · → zj). The open interval of C from
zi to zj, C(zi, zj), is defined similarly. For simplicity, the closed interval C[zi, zi] consisting of the single element zi will also
be written zi, but the context will always indicate whether we are referring to the element or the interval. Also, since our
chains are listed top to bottom, an interval C[y, x] is non-empty when y ≥ x in the poset P , while an interval [x, y] in the
poset is non-empty when x ≤ y in P . Notice that C is a maximal chain in [x, y] if and only if z0 = y and zn = x.

Given twomaximal chains C = (z0 → · · · → zn) and D = (x0 → · · · → xn) in an interval [x, y], we say C and D agree to
index k if zi = xi for all i ≤ k. We say C and D diverge from index k if C and D agree to index k and zk+1 ≠ xk+1. A total ordering
C1 < · · · < Cn of the maximal chains of an interval is a poset lexicographic order if it satisfies the following: suppose C < D
and C and D diverge from index k; if C ′ and D′ agree to index k + 1 with C and D, respectively, then C ′ < D′.

Suppose C1 < · · · < Cn is an ordering of the maximal chains of the closed interval [x, y]. An interval C(zi, zj) is a skipped
interval of a maximal chain C if

C − C(zi, zj) ⊆ C ′ for some C ′ < C .

It is a minimal skipped interval (MSI) if it does not properly contain another skipped interval. We write I(C) for the set of all
MSIs of a chain C . To find the set I(C), first consider each interval I ⊆ C(y, x) and determine if C − I ⊆ C ′ for any C ′ < C ,
then throw out any such interval that is nonminimal. In Tables 3.4 and 3.8, we give examples of minimal skipped intervals
in the context of generalized factor order.

Notice I(C) could contain intervals which overlap, that is, intervals with non-empty intersection. Babson and Hersh’s
result requires a set of disjoint intervals derived from I(C), which we will denote J(C). We construct J(C) = {J1, J2, . . .} as
follows. Order the intervals of I(C) based on when they are first encountered in C . Recall that since our chains are viewed
top-down, larger elements in P have smaller indices in C . Thus, I1 will contain the element zi of smallest index that appears
in any interval in I(C), I2 will contain the element zj < zi of smallest index that appears in any interval in I(C) other than I1,
etc. Let J1 = I1. Consider the intervals I ′2 = I2 − J1, I ′3 = I3 − J1, and so forth. Throw out any that are no longer minimal in
the set I ′2, I

′

3, . . . , and pick the first one that remains to be J2. Continue this process until no intervals remain to add to J(C).
The set of intervals J(C) covers C if its union equals the open interval C(y, x). A chain C is called critical if J(C) covers C .

Finally, when a chain C is critical, the critical dimension of the chain is

d(C) = #J(C) − 1

where # denotes cardinality.

Theorem 1.2 ([1]). For any poset lexicographic order on the maximal chains of [x, y],

µ(x, y) =


C

(−1)d(C),

where the sum is over all critical chains C in the poset lexicographic order. �

The rest of the paper is organized as follows. The next section will give a brief summary of our results. In Section 3, we
will consider in detail generalized factor order on the integers. Section 4 considers generalized factor order on rooted forests,
and gives a formula for the Möbius function which contains the formula of Section 3 and Björner’s formula as subcases. This
is not obvious, and an independent proof is needed to establish the connection with Björner’s formula. Section 5 discusses
open problems related to this work.

2. Summary of results

To use Babson and Hersh’s Theorem 1.2, we first define a lexicographic order on themaximal chains of any interval. Next,
we characterize the corresponding MSIs. The final step is creating a useful description of the critical chains in J(C). In this
particular case, our description of the critical chains requires us to introduce a number of definitions before we can find the
contribution of each critical chain to the Möbius function using Theorem 1.2.

In this section, we record the major definitions in this paper and use them to state our formula for the Möbius function
in its most general form.

Let F be a rooted forest. A flat word in the Kleene closure F∗ is a sequence of r ’s, where r is a minimal element in F . If a
word w in F∗ is not flat, then a letter w(i) is reducible if i = 1, i = |w|, or w(i) is not a minimal element in F .
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