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a b s t r a c t

The set S consists of all finite sets of integer length sticks. By listing the lengths of these
sticks in nonincreasing order, we can represent each element S of S by a nonincreasing
sequence of positive integers. These sequences can then be partially ordered by dominance
to obtain a lattice (also denoted byS ) closely related to the lattice of integer partitions. The
chop vector of an element S ∈ S is defined to be the infinite vector vS = (v1, v2, v3, . . .),
where each vw is the minimum number of cuts needed to chop S into unit pieces, given a
knife which can cut up to w sticks at a time. The chop vectors are ordered componentwise.
In this paper, we show that the mapping that takes any element of S to its chop vector is
order-preserving.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Thepurpose of this paper is to prove a theorem (Theorem1.1) that connects twopreviously unrelated topics: a result in [4]
on parallel cutting of integer-length sticks, and the lattice of integer partitions. Theorem 1.1 answers a question discussed
in [3].

In [4], Ginsburg and Sands considered the following problem. Supposewe are given a finite set of sticks of positive integer
lengths. We wish to chop these sticks into unit-length pieces, using a knife that can cut up to w sticks at a time, where w is
a fixed positive integer (called the width of the knife). How should we proceed in order to chop up the sticks using as few
cuts as possible?

The solution in [4] goes as follows: at each step, choose thew longest nontrivial (that is, of length greater than one) sticks,
or all nontrivial sticks if there are less than w of them, and chop these all in half or as nearly in half as possible (that is, each
stick of even length 2n is cut into two sticks of length n, while each stick of odd length 2n+1 is cut into sticks of lengths n and
n+1). This natural algorithm (called the binary algorithm in [4]) not surprisingly turns out tominimize the number of chops
needed in all cases. (Incidentally, in her thesis, [3] the first author has proven that the above algorithm can be weakened
slightly while still being an optimal solution for this problem.2)

Wewill identify a set of k sticks with an infinite non-increasing sequence S of positive integers, where the first k integers
in S represent the lengths of the sticks, and the remaining members of S are all 1’s. The set of all such sequences S will be
denoted by S . Note that the addition (or deletion) of 1’s (which represent trivial sticks not needing to be cut) at the end
of any S ∈ S will not affect the number of chops needed. Thus, for example, (5, 2, 2, 1, 1, . . .) will usually be denoted by
(5, 2, 2).

E-mail addresses: thao10@gmail.com (T. Ðỗ), sands@ucalgary.ca (B. Sands).
1 Some of the material in this paper is contained in the thesis [3] of the first author.
2 Namely, for odd n, sticks of length 2n can be cut into sticks of lengths n − 1 and n + 1 instead of into equal length-n sticks. However, in this paper we

will use the original binary algorithm.
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We can define a partial order ≤ (called dominance) on S by: for all S = (s1, s2, . . .) and T = (t1, t2, . . .) in S ,

S ≤ T if and only if
j

i=1

si ≤

j
i=1

ti for all j ≥ 1.

Then (S , ≤) becomes a lattice, which we also denote simply by S . There is a close relationship between the lattice S and
the lattice of integer partitions, which we give in the next section.

For each S ∈ S , define the infinite vector vS = (v1, v2, v3, . . .) where, for w ≥ 1, vw is the minimum number of cuts
needed to chop S into unit pieces given a knife which can cut up to w pieces at a time. We call vS the chop vector of S.

Note that v1 is the number of cuts required to chop all nontrivial sticks in S into units, one stick at a time, and so
v1 =


s∈S(s− 1). Also, the chop vector is a non-increasing sequence of non-negative integers, so vS is eventually constant.

For example, consider S = (7, 3, 2), for which v1 = 9. Also v2 = 5, since the binary algorithm with a knife of width
w = 2 cuts S in five steps as follows:

(7, 3, 2) → (4, 3, 2, 2, 1) → (2, 2, 2, 2, 2, 1, 1) → (2, 2, 2, 1, 1, 1, 1, 1, 1)
→(2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) → (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Ignoring trivial sticks, we write this dissection as

(7, 3, 2) → (4, 3, 2, 2) → (2, 2, 2, 2, 2) → (2, 2, 2) → (2) → ∅.

But with a knife of width w = 3, the dissection takes only three steps:

(7, 3, 2) → (4, 3, 2) → (2, 2, 2) → ∅.

Moreover, it is easy to see that, for width at least 3, at least three cuts are needed. Thus v(7,3,2) = (9, 5, 3, 3, . . .).
The family of all chop vectors, considered as elements of the direct productNω , can be naturally ordered componentwise;

that is, for all S, T ∈ S , put vS ≤ vT if and only if (vS)i ≤ (vT )i for all i.
We can now state our main theorem.

Theorem 1.1. The function φ : S → Nω defined by φ(S) = vS for all S ∈ S is order-preserving; that is, if S ≤ T ∈ S , then
vS ≤ vT .

The next section contains some background information. The proof of Theorem 1.1, along with a lemma that forms a
large part of the proof, is given in Section 3. Some closing remarks appear in the last section.

2. Preliminaries

If we deduct 1 from each entry in a sequence S ∈ S , we obtain an infinite non-decreasing sequence S ′ of non-
negative integers, only finitely many of which are nonzero. Thus we will consider S ′ as a partition of the positive integer

s′∈S′ s′ =


s∈S(s − 1). Therefore {S ′
: S ∈ S } forms the set P of all integer partitions (see for example [2,1,7]).

Furthermore, P can be given a natural partial ordering ≤ called dominance ordering (ormajorization) as follows. For integer
partitions S = (s1, s2, . . .) and T = (t1, t2, . . .) in P , put S ≤ T if and only if

j
i=1 si ≤

j
i=1 ti for all j ≥ 1.

Under the dominance ordering, P is a lattice (called the lattice of integer partitions), as shown in [1] and in [7], though
in [1] the lattice is denoted by NPL, and in [7], the definition of ≤ is slightly different so that the lattice obtained (denoted by
LB(∞) in [7]) is dually isomorphic to P . Much earlier, Brylawski [2] had considered the partitions of a fixed integer n, under
dominance ordering, but did not combine the resulting finite lattices of integer partitions into the full (infinite) lattice P .
Other papers dealing briefly with the finite lattices of integer partitions are [6,8] and the survey paper [5].

In our introduction, the ordering we defined on the set S was also dominance ordering. Clearly, the lattices S and P

are isomorphic, via the renaming S → S ′. Fig. 1 (adapted from a diagram for P in [1]) shows the lower part of the lattice S ,
containing all elements S ∈ S satisfying v1 ≤ 8. As has already been mentioned, we suppress the 1’s from the elements of
S , so that only nontrivial sticks are shown.

The following result follows immediately from the analogous result forP (see [2,1] and also Chapter 5, LemmaD.1 in [9]).

Lemma 2.1. Dominance ordering ≤ on the lattice S is the transitive and reflexive closure of the following two types of relations.
Consider S, T ∈ S with S = (s1, . . . , sm) and T = (t1, . . . , tn). It follows that S < T if
(i) n = m + 1, tm+1 = 2, and si = ti for all 1 ≤ i ≤ m, or
(ii) n = m and there exist j and k with 1 ≤ j < k ≤ m such that tj = sj + 1, tk = sk − 1, and ti = si for all i ≠ j or k.

Considering S and T as (multi)sets of (lengths of) sticks rather than as nonincreasing sequences of lengths,
• (i) is equivalent to T = S ∪ {2}, and
• (ii) is equivalent to T = (S − {x, y}) ∪ {x − 1, y + 1} for some x, y in S satisfying 2 ≤ x ≤ y.

For instance, (4, 3) < (4, 3, 2) in Fig. 1 is an example of the first kind of relation above, while (4, 3, 2) < (5, 2, 2) and
(4, 3, 2) < (4, 4, 1) = (4, 4) are examples of the second kind. Thus (4, 3) < (5, 2, 2) and (4, 3) < (4, 4) in the transitive
closure.
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