Contents lists available at [SciVerse ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Chop vectors and the lattice of integer partitions

Thảo Đỗ 1 1 , Bill Sands

Department of Mathematics & Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada

ARTICLE INFO

Article history: Received 12 May 2010 Received in revised form 21 August 2011 Accepted 28 November 2011 Available online 30 December 2011

Keywords: Lattice Integer partition

A B S T R A C T

The set $\mathscr S$ consists of all finite sets of integer length sticks. By listing the lengths of these sticks in nonincreasing order, we can represent each element *S* of \mathscr{S} by a nonincreasing sequence of positive integers. These sequences can then be partially ordered by dominance to obtain a lattice (also denoted by \mathscr{P}) closely related to the lattice of integer partitions. The *chop vector* of an element $S \in \mathcal{S}$ is defined to be the infinite vector $\mathbf{v}_S = (v_1, v_2, v_3, \ldots)$, where each v_w is the minimum number of cuts needed to chop *S* into unit pieces, given a knife which can cut up to w sticks at a time. The chop vectors are ordered componentwise. In this paper, we show that the mapping that takes any element of $\mathscr S$ to its chop vector is order-preserving.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of this paper is to prove a theorem [\(Theorem 1.1\)](#page-1-0) that connects two previously unrelated topics: a result in [\[4\]](#page--1-0) on parallel cutting of integer-length sticks, and the lattice of integer partitions. [Theorem 1.1](#page-1-0) answers a question discussed in [\[3\]](#page--1-1).

In [\[4\]](#page--1-0), Ginsburg and Sands considered the following problem. Suppose we are given a finite set of sticks of positive integer lengths. We wish to chop these sticks into unit-length pieces, using a knife that can cut up to w sticks at a time, where w is a fixed positive integer (called the *width* of the knife). How should we proceed in order to chop up the sticks using as few cuts as possible?

The solution in [\[4\]](#page--1-0) goes as follows: at each step, choose the w longest *nontrivial* (that is, of length greater than one) sticks, or all nontrivial sticks if there are less than w of them, and chop these all in half or as nearly in half as possible (that is, each stick of even length 2*n* is cut into two sticks of length *n*, while each stick of odd length 2*n*+1 is cut into sticks of lengths *n* and *n*+1). This natural algorithm (called the *binary* algorithm in [\[4\]](#page--1-0)) not surprisingly turns out to minimize the number of chops needed in all cases. (Incidentally, in her thesis, [\[3\]](#page--1-1) the first author has proven that the above algorithm can be weakened slightly while still being an optimal solution for this problem.^{[2](#page-0-1)})

We will identify a set of *k* sticks with an infinite non-increasing sequence *S* of positive integers, where the first *k* integers in *S* represent the lengths of the sticks, and the remaining members of *S* are all 1's. The set of all such sequences *S* will be denoted by \mathscr{S} . Note that the addition (or deletion) of 1's (which represent trivial sticks not needing to be cut) at the end of any $S \in \mathcal{S}$ will not affect the number of chops needed. Thus, for example, $(5, 2, 2, 1, 1, ...)$ will usually be denoted by (5, 2, 2).

E-mail addresses: thao10@gmail.com (T. Đỗ), sands@ucalgary.ca (B. Sands).

 $^{\rm 1}$ Some of the material in this paper is contained in the thesis [\[3\]](#page--1-1) of the first author.

² Namely, for *odd n*, sticks of length 2*n* can be cut into sticks of lengths *n* − 1 and *n* + 1 instead of into equal length-*n* sticks. However, in this paper we will use the original binary algorithm.

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter © 2011 Elsevier B.V. All rights reserved. [doi:10.1016/j.disc.2011.11.029](http://dx.doi.org/10.1016/j.disc.2011.11.029)

We can define a partial order \leq (called *dominance*) on \mathscr{S} by: for all $S = (s_1, s_2, \ldots)$ and $T = (t_1, t_2, \ldots)$ in \mathscr{S} ,

$$
S \leq T \quad \text{if and only if } \sum_{i=1}^{j} s_i \leq \sum_{i=1}^{j} t_i \text{ for all } j \geq 1.
$$

Then ($\mathscr{S},$ <) becomes a lattice, which we also denote simply by \mathscr{S} . There is a close relationship between the lattice \mathscr{S} and the lattice of integer partitions, which we give in the next section.

For each $S \in \mathscr{S}$, define the infinite vector $\mathbf{v}_S = (v_1, v_2, v_3, ...)$ where, for $w > 1$, v_w is the minimum number of cuts needed to chop *S* into unit pieces given a knife which can cut up to w pieces at a time. We call **v***^S* the *chop vector* of *S*.

Note that v_1 is the number of cuts required to chop all nontrivial sticks in *S* into units, one stick at a time, and so *v*₁ = ∑_{*s*∈*S*}(*s* − 1). Also, the chop vector is a non-increasing sequence of non-negative integers, so **v**_{*S*} is eventually constant. For example, consider $S = (7, 3, 2)$, for which $v_1 = 9$. Also $v_2 = 5$, since the binary algorithm with a knife of width $w = 2$ cuts *S* in five steps as follows:

 $(7, 3, 2) \rightarrow (4, 3, 2, 2, 1) \rightarrow (2, 2, 2, 2, 1, 1) \rightarrow (2, 2, 2, 1, 1, 1, 1, 1, 1)$

 \rightarrow (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) \rightarrow (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Ignoring trivial sticks, we write this dissection as

 $(7, 3, 2) \rightarrow (4, 3, 2, 2) \rightarrow (2, 2, 2, 2, 2) \rightarrow (2, 2, 2) \rightarrow (2) \rightarrow \emptyset.$

But with a knife of width $w = 3$, the dissection takes only three steps:

 $(7, 3, 2) \rightarrow (4, 3, 2) \rightarrow (2, 2, 2) \rightarrow \emptyset.$

Moreover, it is easy to see that, for width at least 3, at least three cuts are needed. Thus $\mathbf{v}_{(7,3,2)} = (9, 5, 3, 3, \ldots)$.

The family of all chop vectors, considered as elements of the direct product \mathbb{N}^ω , can be naturally ordered componentwise; that is, for all *S*, $T \in \mathscr{S}$, put $\mathbf{v}_S \leq \mathbf{v}_T$ if and only if $(\mathbf{v}_S)_i \leq (\mathbf{v}_T)_i$ for all *i*.

We can now state our main theorem.

Theorem 1.1. The function $\phi: \mathscr{S} \to \mathbb{N}^{\omega}$ defined by $\phi(S) = \mathbf{v}_S$ for all $S \in \mathscr{S}$ is order-preserving; that is, if $S \le T \in \mathscr{S}$, then $\mathbf{v}_\mathsf{S} \leq \mathbf{v}_\mathsf{T}$ *.*

The next section contains some background information. The proof of [Theorem 1.1,](#page-1-0) along with a lemma that forms a large part of the proof, is given in Section [3.](#page--1-2) Some closing remarks appear in the last section.

2. Preliminaries

If we deduct 1 from each entry in a sequence $S \in \mathscr{S}$, we obtain an infinite non-decreasing sequence S' of nonnegative integers, only finitely many of which are nonzero. Thus we will consider *S* ′ as a partition of the positive integer $\sum_{s' \in S'} s' = \sum_{s \in S} (s - 1)$ $\sum_{s' \in S'} s' = \sum_{s \in S} (s - 1)$ $\sum_{s' \in S'} s' = \sum_{s \in S} (s - 1)$. Therefore $\{S' : S \in \mathcal{S}\}\$ forms the set \mathcal{P} of all integer partitions (see for example [\[2,](#page--1-3)1[,7\]](#page--1-5)). Furthermore, P can be given a natural partial ordering ≤ called *dominance ordering* (or *majorization*) as follows. For integer partitions $S=(s_1,s_2,\ldots)$ and $T=(t_1,t_2,\ldots)$ in $\mathscr P$, put $S\leq T$ if and only if $\sum_{i=1}^j s_i\leq \sum_{i=1}^j t_i$ for all $j\geq 1$.

Under the dominance ordering, $\mathscr P$ is a lattice (called the *lattice of integer partitions*), as shown in [\[1\]](#page--1-4) and in [\[7\]](#page--1-5), though in [\[1\]](#page--1-4) the lattice is denoted by *NPL*, and in [\[7\]](#page--1-5), the definition of \leq is slightly different so that the lattice obtained (denoted by $L_B(\infty)$ in [\[7\]](#page--1-5)) is dually isomorphic to \mathscr{P} . Much earlier, Brylawski [\[2\]](#page--1-3) had considered the partitions of a fixed integer *n*, under dominance ordering, but did not combine the resulting finite lattices of integer partitions into the full (infinite) lattice \mathcal{P} . Other papers dealing briefly with the finite lattices of integer partitions are [\[6,](#page--1-6)[8\]](#page--1-7) and the survey paper [\[5\]](#page--1-8).

In our introduction, the ordering we defined on the set $\mathscr S$ was also dominance ordering. Clearly, the lattices $\mathscr S$ and $\mathscr P$ are isomorphic, via the renaming $S \to S'$. [Fig. 1](#page--1-9) (adapted from a diagram for $\mathscr P$ in [\[1\]](#page--1-4)) shows the lower part of the lattice $\mathscr S$, containing all elements $S \in \mathscr{S}$ satisfying $v_1 \leq 8$. As has already been mentioned, we suppress the 1's from the elements of \mathscr{S} , so that only nontrivial sticks are shown.

The following result follows immediately from the analogous result for $\mathcal P$ (see [\[2,](#page--1-3)[1\]](#page--1-4) and also Chapter 5, Lemma D.1 in [\[9\]](#page--1-10)).

Lemma 2.1. *Dominance ordering* \leq *on the lattice* \mathcal{S} *is the transitive and reflexive closure of the following two types of relations. Consider S, T* $\in \mathcal{S}$ *with* $S = (s_1, \ldots, s_m)$ *and* $T = (t_1, \ldots, t_n)$ *. It follows that* $S < T$ *if*

(i) $n = m + 1$, $t_{m+1} = 2$, and $s_i = t_i$ for all $1 \le i \le m$, or

(ii) $n = m$ and there exist j and k with $1 \le j < k \le m$ such that $t_j = s_j + 1$, $t_k = s_k - 1$, and $t_i = s_i$ for all $i \ne j$ or k.

Considering S and T as (multi)sets of (lengths of) sticks rather than as nonincreasing sequences of lengths,

- (i) *is equivalent to* $T = S \cup \{2\}$ *, and*
- (ii) *is equivalent to* $T = (S \{x, y\}) \cup \{x 1, y + 1\}$ *for some* x, *y* in S satisfying $2 \le x \le y$.

For instance, $(4, 3) < (4, 3, 2)$ in [Fig. 1](#page--1-9) is an example of the first kind of relation above, while $(4, 3, 2) < (5, 2, 2)$ and $(4, 3, 2)$ < $(4, 4, 1)$ = $(4, 4)$ are examples of the second kind. Thus $(4, 3)$ < $(5, 2, 2)$ and $(4, 3)$ < $(4, 4)$ in the transitive closure.

Download English Version:

<https://daneshyari.com/en/article/4647902>

Download Persian Version:

<https://daneshyari.com/article/4647902>

[Daneshyari.com](https://daneshyari.com)