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a b s t r a c t

Quotients through modular partitions are well adapted to the computation of Nash
equilibria and values in the (zero-sum, two-player) game associated to a bounded skew-
symmetric matrix. Applications to infinite oriented graphs are provided.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In November 1713, in a letter to Nicolas Bernoulli, the Marquis Pierre Rémond de Montmort (see ‘‘Essay d’analyse sur les
jeux de hazard’’, [7, p. 406]) proposed the following game which seemed unsolvable to him: ‘‘A father wants to give a new
year’s gift to his son and says to him that he will hide in his hand a token with a natural number, ‘‘even’’ or ‘‘odd’’. If his
son says ‘‘even’’ (respectively, ‘‘odd’’) and the token is ‘‘even’’ (respectively, ‘‘odd’’), then he will give 4 (respectively, 1) ecus
to his son; else he will give 0 ecu to his son’’. Then Montmort asks several questions. Which rules should be prescribed to
the father (respectively, to the son) in order that he loses (respectively, earns) a little (respectively, a lot of) money? How
much money will the son earn if each player follows the most advantageous way for him? Various mathematicians studied
extensions of this game, now called (finite) zero-sum two-player games in ‘‘normal form’’. They proposed ‘‘solutions’’ now
called equilibria using mixed strategies. In the Montmort example, the most advantageous way for each player is to play
‘‘even’’ with probability 1

5 , and ‘‘odd’’ with probability 4
5 ; then the expected payoff of the son is 4

5 . In the particular case of
finite symmetric zero-sum two-player games with at most five pure strategies, Borel [2–4] showed the existence of (at least)
an equilibrium. Among these games, the ‘‘Rock–Paper–Scissors’’ game or its extension ‘‘Rock–Paper–Scissors–Well’’ (see
Example 1) are widely known. Later, von Neumann [19,18] and Nash (see [16,17]) proved the existence of ‘‘Nash equilibria’’
in every finite n-player game. Notice that generally such equilibria are not unique; however, some uniqueness theorems
have been proved for certain symmetric two-player zero-sum finite games (see [11–13]).

The study of infinite two-player zero-sum games is more difficult since the ‘‘minimax theorem’’ for an arbitrary bounded
matrix does not hold anymore (consider, for example, thematrix of the reverse (usual) strict order onNwithout any greatest
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element [20, p. 182]), so Nash’s theorem cannot be applied to infinite zero-sum two-player games in normal form. However,
some results for infinite games were obtained: for example, Méndez-Naya ([14, Th. 4.3 p. 228], [15, Th. 4 p. 84]) showed the
existence of a value for certain bounded infinite matrices in which every row converges.

In this paper, we consider the notion of modular partition for a bounded skew-symmetric (finite or infinite) matrix M .
Denoting byQ the quotientmatrix ofM through amodular partition,we then prove that everyNash equilibriumof (the zero-
sum, two-player game associated to)M allows to compute a Nash equilibrium of Q (Theorem 1), and also, Nash equilibria of
restrictions ofM to the modules of positive weight with respect to the equilibrium ofM (Theorem 2). A converse statement
providing Nash equilibria of M knowing Nash equilibria of Q and of the restrictions of M also holds (Theorem 3). Notice
that this converse statement is linked to the composition consistency property in finite tournaments (see [11]). We then
prove that, if M has a value, Q also has a value (Theorem 4). We define the upper value of a bounded matrix, and, we show
(Theorem 5) that the upper value ofM is the upper value of Q +D, where D is the diagonal matrix of the upper values of the
(restrictions ofM to its) modules. Finally, we describe various examples of computations of Nash equilibria or upper values
in infinite oriented graphs.

The paper is organized as follows. In Section 2, we recall Nash equilibria of the game associated to a (finite or infinite)
bounded real matrix; in Section 3 we define modules and modular partitions of a skew-symmetric matrix; in Sections 4
(respectively, 5 and 6) we prove theorems for Nash equilibria (respectively, values and upper values) of a skew-symmetric
boundedmatrixM in the context of modular partitions; finally, in Section 7, we apply our results to various oriented graphs.

2. Nash equilibria of bounded matrices

2.1. Bounded matrices

Given a set I , ℓ1(I) denotes the space of X = (xi)i∈I ∈ RI such that ∥X∥1 :=


i∈I |xi| < +∞, and ℓ∞(I) denotes the
space of X = (xi)i∈I ∈ RI such that ∥X∥∞ := supi∈I |xi| < +∞. Given sets I, J , a real matrix M = (ai,j)i∈I,j∈J is bounded
if ∥M∥∞ := supi∈I;j∈J |ai,j| < +∞. Every bounded matrix M defines a continuous linear mapping from ℓ1(J) to ℓ∞(I),
associating to every Y = (yi)i∈J ∈ ℓ1(J) (viewed as a one-columnmatrix) the elementMY := (


j∈J ai,jyj)i∈I of ℓ∞(I); notice

that ∥MY∥∞ ≤ ∥M∥∞∥Y∥1. We denote by ⟨., .⟩ : ℓ1(I) × ℓ∞(I) → R the continuous bilinear mapping associating to every
X = (xi)i∈I ∈ ℓ1(I) and every Y = (yi)i∈I ∈ ℓ∞(I), the real number


i∈I xiyi. We denote by βM : ℓ1(I) × ℓ1(J) → R the

continuous bilinear mapping associating to each X ∈ ℓ1(I) and Y ∈ ℓ1(J) the real number ⟨X,MY ⟩ (also denoted by XTMY ,
where XT is the transposed matrix of the one-column matrix X). If the bounded matrix M = (ai,j)i,j∈I is skew symmetric
(MT

= −M , i.e., for every i, j ∈ I , ai,j = −aj,i), then the bilinear mapping βM is also skew-symmetric (for every X, Y ∈ ℓ1(I),
βM(Y , X) = −βM(X, Y )).

2.2. The (two-player) zero-sum game associated to a bounded matrix

2.2.1. Mixed strategies on a set I
Given a set I , we denote by ∆I the set of X = (xi)i∈I ∈ [0, 1]I such that


i∈I xi = 1. The elements of ∆I correspond to

the discrete probabilities on the set I: they are also called mixed strategies on I . For every i ∈ I , we denote by δi the element
of ∆I such that δi(j) = 1 if j = i, and δi(j) = 0 if j ≠ i. Thus δi corresponds to the Dirac measure at point i. Dirac measures at
points of I are also called pure strategies on I .

Remark 1. In the normed space ℓ1(I), the subset ∆I is the closed convex hull of the set {δi : i ∈ I} of Dirac measures on I .
Besides, the closed unit ball of the normed space ℓ1(I) is the closed convex hull of the set {±δi : i ∈ I}.

2.2.2. Payoff function associated to a bounded matrix
Given a bounded real matrixM = (ai,j)i∈I,j∈J , the restriction of βM to the set ∆I × ∆J is the payoff function associated to

the matrix M; we denote it by GM . Notice that the mapping GM : ∆I × ∆J → R associates to every (X, Y ) ∈ ∆I × ∆J the
expectation ofM according to the (discrete) probability X ⊗ Y on the set I × J .

2.3. Saddle points

Given two sets A, B, consider a mapping G : A × B → R. A point (a, b) ∈ A × B is a saddle point of G if, for every x ∈ A
and y ∈ B, G(x, b) ≤ G(a, b) ≤ G(a, y).

We recall the following remarks, which are well known.

Remark 2. The set of saddle points of a real mapping G : A × B → R is a product set: if (a, b) and (c, d) are saddle points of
G, then (c, b) and (a, d) are also saddle points of G.

Remark 3. If G : A × A → R is skew symmetric, and if (a, b) is a saddle point of G, then (b, a) is also a saddle
point of G; thus (a, a) and (b, b) are saddle points of G, and, for every saddle point (a, b) of G, G(a, b) = 0 (because
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