Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/disc

The pebbling number of squares of even cycles[☆]

Yongsheng Ye^{a,*}, Pengfei Zhang^b, Yun Zhang^a

^a School of Mathematical Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China ^b School of Computer Science and Technology, Huaibei Normal University, Huaibei, Anhui, 235000, PR China

ARTICLE INFO

Article history: Received 26 August 2009 Received in revised form 14 July 2012 Accepted 17 July 2012 Available online 4 August 2012

Keywords: Pebble Even cycles Pebbling number

1. Introduction

ABSTRACT

A pebbling move on a graph *G* consists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. The pebbling number of a connected graph *G*, denoted by f(G), is the least *n* such that any distribution of *n* pebbles on *G* allows one pebble to be moved to any specified vertex by a sequence of pebbling moves. In this paper, we determine the pebbling numbers of squares of even cycles.

© 2012 Elsevier B.V. All rights reserved.

Pebbling of graphs was first introduced by Chung [1]. Consider a connected graph with a fixed number of pebbles distributed on its vertices. A pebbling move consists of the removal of two pebbles from a vertex and the placement of one of those pebbles on an adjacent vertex. The pebbling number of a vertex v in a graph G is the smallest number f(G, v) with the property that from every placement of f(G, v) pebbles on G, it is possible to move a pebble to v by a sequence of pebbling moves. The pebbling number of a graph G, denoted by f(G), is the maximum of f(G, v) over all the vertices of G.

There are many known results about pebbling number (see [1,5,4,6,7,2,3]). If each vertex (except v) has at most one pebble, then no pebble can be moved to v. Also, if u is of distance d from v and at most $2^d - 1$ pebbles are placed on u (and none elsewhere), then no pebble can be moved from u to v. So it is clear that $f(G) \ge \max\{|V(G)|, 2^D\}$, where |V(G)| is the number of vertices of G, and D is the diameter of G. Furthermore, $f(K_n) = n$ and $f(P_n) = 2^{n-1}$ (see [1]), where K_n denotes a complete graph with n vertices and P_n denotes a path with n vertices.

Throughout this paper, *G* denotes a simple connected graph with vertex set *V*(*G*) and edge set *E*(*G*). Let *p* be a distribution of pebbles on *G*. Define *p*(*H*) to be the number of pebbles on a subgraph *H* of *G* and *p*(*v*) to be the number of pebbles on a vertex *v* of *G*. Moreover, denote by $\tilde{p}(H)$ and $\tilde{p}(v)$ the number of pebbles on *H* and the number of pebbles on *v* after a specified sequence of pebbling moves, respectively. For $uv \in E(G)$, $u \xrightarrow{m} v$ refers to taking 2m pebbles off *u* and placing *m* pebbles on *v*. Denote by $\langle v_0, v_1, \ldots, v_{n-1} \rangle$ (respectively, $[v_0, v_1, \ldots, v_{n-1}]$) the path (respectively, cycle) with vertices $v_0, v_1, \ldots, v_{n-1}$ in order.

Let *G* be a connected graph. For $u, v \in V(G)$, we denote by $d_G(u, v)$ the distance between *u* and *v* in *G*. The *k*th power of *G*, denoted by G^k , is the graph obtained from *G* by adding the edge uv to *G* whenever $2 \leq d_G(u, v) \leq k$ in *G*. That is, $E(G^k) = \{uv : 1 \leq d_G(u, v) \leq k\}$. Obviously, G^k is the complete graph whenever *k* is at least the diameter of *G*. We now introduce a lemma which will be used in the subsequent proofs.

* Corresponding author. E-mail address: yeysh66@163.com (Y. Ye).

[🌣] Supported by National Natural Science Foundation of China (No. 10971248).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2012.07.016

Lemma 1 ([6]). $f(P_{2k}^2) = 2^k, f(P_{2k+1}^2) = 2^k + 1.$

In [6], Pachter et al. gave the pebbling numbers of squares of paths (see Lemma 1). Naturally, we want to know the pebbling number of C_n^2 . In [8], the pebbling numbers of squares of odd cycles were obtained:

(i) for $2 \le n \le 6$, $f(C_{2n+1}^2) = 2n + 1$; (ii) for $k \ge 3$, $f(C_{4k+3}^2) = 2^{k+1} + 1$; (iii) for $k \ge 4$, $f(C_{4k+1}^2) = \left\lceil \frac{2^{k+2}}{3} \right\rceil + 1$.

Motivated by this, we obtain the pebbling numbers of squares of even cycles in this paper.

2. Pebbling C_{2n}^2

This section studies the pebbling number of C_{2n}^2 . Let $C_{2n} = [v, a_1, ..., a_{n-1}, y, b_{n-1}, ..., b_1]$. By symmetry, we may assume that v is the target vertex in C_{2n}^2 and p(v) = 0. First, we give the pebbling number of C_{2n}^2 for $n \le 6$. See Theorems 2 and 3.

Theorem 2. For $2 \le n \le 5$, $f(C_{2n}^2) = 2n$.

Proof. Let $Q_A = \langle v, a_1, \ldots, a_{n-1} \rangle$ and $Q_B = \langle v, b_1, \ldots, b_{n-1} \rangle$. For $2 \leq n \leq 5$, we have $f(Q_A^2) = f(Q_B^2) = n$ by Lemma 1. Clearly, $f(C_{2n}^2) \geq 2n$. Now distribute 2n pebbles on C_{2n}^2 . Without loss of generality, we assume that $p(Q_A^2) \geq p(Q_B^2)$. Thus $p(Q_A^2) \geq \left\lceil \frac{2n - p(y)}{2} \right\rceil = n - \left\lfloor \frac{p(y)}{2} \right\rfloor$. Since we can move $\left\lfloor \frac{p(y)}{2} \right\rfloor$ pebbles from y to a_{n-1} , $\tilde{p}(Q_A^2) \geq p(Q_A^2) + \left\lfloor \frac{p(y)}{2} \right\rfloor \geq n$. The proof is completed. \Box

Theorem 3. $f(C_{12}^2) = 12$.

Proof. Let $Q_A = \langle v, a_1, a_2, a_3, a_4 \rangle$ and $Q_B = \langle v, b_1, b_2, b_3, b_4 \rangle$. Moreover, let $Q_A^+ = \langle v, a_1, a_2, a_3, a_4, a_5 \rangle$ and $Q_B^+ = \langle v, b_1, b_2, b_3, b_4, b_5 \rangle$. By Lemma 1, we have $f(Q_A^2) = f(Q_B^2) = 5$ and $f((Q_A^+)^2) = f((Q_B^+)^2) = 8$. Clearly, $f(C_{12}^2) \ge 12$. For convenience, a_5 and b_5 are denoted by x and z, respectively. Suppose that there are 12 pebbles distributed on the vertices of C_{12}^2 , i.e.,

$$p(Q_A^2) + p(Q_B^2) + p(x) + p(y) + p(z) = 12.$$
(1)

We first consider the case $p(x) + p(z) \ge 10$. It suffices to show that, after some pebbling moves, $\tilde{p}((Q_A^+)^2) \ge 8$ or $\tilde{p}((Q_B^+)^2) \ge 8$. Without loss of generality, we may assume that $p(x) \ge p(z)$. If $p(x) > \max\{p(z), 5\}$, then $p(x) + \lfloor \frac{p(z)}{2} \rfloor \ge 8$, and this implies $\tilde{p}((Q_A^+)^2) \ge 8$. Now suppose that p(x) = p(z) = 5. If $p(Q_A^2) = p(Q_B^2) = 0$, then p(y) = 2. Moving one pebble from *y* to *x*, we have $\tilde{p}(x) > 5$, and the previous case applies. Otherwise, suppose without loss of generality that Q_A^2 has at least one pebble; now 2 pebbles can be moved from *z* to *x* to obtain $\tilde{p}((Q_A^+)^2) \ge 8$.

Next, we consider the case p(x) + p(z) < 10. Obviously, if $\tilde{p}(Q_A^2) \ge 5$ or $\tilde{p}(Q_B^2) \ge 5$, then we are done. If $\tilde{p}(Q_A^2) < 5$ and $\tilde{p}(Q_B^2) < 5$, then

$$p(Q_A^2) + \left\lfloor \frac{p(y)}{2} \right\rfloor + \left\lfloor \frac{p(x) + \left\lfloor \frac{p(z)}{2} \right\rfloor}{2} \right\rfloor \leqslant 4$$
(2)

and

$$p(Q_B^2) + \left\lfloor \frac{p(y)}{2} \right\rfloor + \left\lfloor \frac{p(z) + \left\lfloor \frac{p(x)}{2} \right\rfloor}{2} \right\rfloor \leqslant 4.$$
(3)

(2) and (3) result from moving as many pebbles as possible from *x*, *y*, *z* to *a*₄ and *b*₄, respectively. We see that *z* can contribute pebbles not only to *x*, but also to *y*. If $p(z) \ge 2$, then we can move pebbles from *z* to *x* and *y* to make at least one of $\tilde{p}(x)$ and $\tilde{p}(y)$ be even. So (2) can be rewritten as $p(Q_A^2) + \left| \frac{p(x) + p(y) + \left\lfloor \frac{p(z)}{2} \right\rfloor}{2} \right| \le 4$ for $p(z) \ge 2$.

For the case $\min\{p(x), p(z)\} \ge 2$, we have

$$p(Q_A^2) + \left\lfloor \frac{p(x) + p(y) + \left\lfloor \frac{p(z)}{2} \right\rfloor}{2} \right\rfloor \leqslant 4 \quad \text{and} \quad p(Q_B^2) + \left\lfloor \frac{p(z) + p(y) + \left\lfloor \frac{p(x)}{2} \right\rfloor}{2} \right\rfloor \leqslant 4.$$
(4)

Download English Version:

https://daneshyari.com/en/article/4648014

Download Persian Version:

https://daneshyari.com/article/4648014

Daneshyari.com