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a b s t r a c t

A pebbling move on a graph G consists of taking two pebbles off one vertex and placing
one pebble on an adjacent vertex. The pebbling number of a connected graph G, denoted
by f (G), is the least n such that any distribution of n pebbles on G allows one pebble to be
moved to any specified vertex by a sequence of pebblingmoves. In this paper,wedetermine
the pebbling numbers of squares of even cycles.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Pebbling of graphs was first introduced by Chung [1]. Consider a connected graph with a fixed number of pebbles
distributed on its vertices. A pebbling move consists of the removal of two pebbles from a vertex and the placement of
one of those pebbles on an adjacent vertex. The pebbling number of a vertex v in a graph G is the smallest number f (G, v)
with the property that from every placement of f (G, v) pebbles on G, it is possible to move a pebble to v by a sequence of
pebbling moves. The pebbling number of a graph G, denoted by f (G), is the maximum of f (G, v) over all the vertices of G.

There are many known results about pebbling number (see [1,5,4,6,7,2,3]). If each vertex (except v) has at most one
pebble, then no pebble can be moved to v. Also, if u is of distance d from v and at most 2d

− 1 pebbles are placed on u (and
none elsewhere), then no pebble can be moved from u to v. So it is clear that f (G) > max{|V (G)|, 2D

}, where |V (G)| is the
number of vertices of G, and D is the diameter of G. Furthermore, f (Kn) = n and f (Pn) = 2n−1 (see [1]), where Kn denotes a
complete graph with n vertices and Pn denotes a path with n vertices.

Throughout this paper,G denotes a simple connected graphwith vertex set V (G) and edge set E(G). Let p be a distribution
of pebbles on G. Define p(H) to be the number of pebbles on a subgraph H of G and p(v) to be the number of pebbles on
a vertex v of G. Moreover, denote byp(H) andp(v) the number of pebbles on H and the number of pebbles on v after a
specified sequence of pebbling moves, respectively. For uv ∈ E(G), u

m
−→ v refers to taking 2m pebbles off u and placing

m pebbles on v. Denote by ⟨v0, v1, . . . , vn−1⟩ (respectively, [v0, v1, . . . , vn−1]) the path (respectively, cycle) with vertices
v0, v1, . . . , vn−1 in order.

Let G be a connected graph. For u, v ∈ V (G), we denote by dG(u, v) the distance between u and v in G. The kth power
of G, denoted by Gk, is the graph obtained from G by adding the edge uv to G whenever 2 6 dG(u, v) 6 k in G. That is,
E(Gk) = {uv : 1 6 dG(u, v) 6 k}. Obviously, Gk is the complete graph whenever k is at least the diameter of G. We now
introduce a lemma which will be used in the subsequent proofs.
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Lemma 1 ([6]). f (P2
2k) = 2k, f (P2

2k+1) = 2k
+ 1.

In [6], Pachter et al. gave the pebbling numbers of squares of paths (see Lemma 1). Naturally, we want to know the
pebbling number of C2

n . In [8], the pebbling numbers of squares of odd cycles were obtained:

(i) for 2 6 n 6 6, f (C2
2n+1) = 2n + 1;

(ii) for k > 3, f (C2
4k+3) = 2k+1

+ 1;

(iii) for k > 4, f (C2
4k+1) =


2k+2

3


+ 1.

Motivated by this, we obtain the pebbling numbers of squares of even cycles in this paper.

2. Pebbling C2
2n

This section studies the pebbling number of C2
2n. Let C2n = [v, a1, . . . , an−1, y, bn−1, . . . , b1]. By symmetry, we may

assume that v is the target vertex in C2
2n and p(v) = 0. First, we give the pebbling number of C2

2n for n 6 6. See Theorems 2
and 3.

Theorem 2. For 2 6 n 6 5, f (C2
2n) = 2n.

Proof. Let QA = ⟨v, a1, . . . , an−1⟩ and QB = ⟨v, b1, . . . , bn−1⟩. For 2 6 n 6 5, we have f (Q 2
A ) = f (Q 2

B ) = n by Lemma 1.
Clearly, f (C2

2n) > 2n. Now distribute 2n pebbles on C2
2n. Without loss of generality, we assume that p(Q 2

A ) > p(Q 2
B ). Thus

p(Q 2
A ) >


2n−p(y)

2


= n −


p(y)
2


. Since we can move


p(y)
2


pebbles from y to an−1,p(Q 2

A ) > p(Q 2
A ) +


p(y)
2


> n. The proof

is completed. �

Theorem 3. f (C2
12) = 12.

Proof. Let QA = ⟨v, a1, a2, a3, a4⟩ and QB = ⟨v, b1, b2, b3, b4⟩. Moreover, let Q+

A = ⟨v, a1, a2, a3, a4, a5⟩ and Q+

B =

⟨v, b1, b2, b3, b4, b5⟩. By Lemma 1, we have f (Q 2
A ) = f (Q 2

B ) = 5 and f ((Q+

A )2) = f ((Q+

B )2) = 8. Clearly, f (C2
12) > 12. For

convenience, a5 and b5 are denoted by x and z, respectively. Suppose that there are 12 pebbles distributed on the vertices of
C2
12, i.e.,

p(Q 2
A ) + p(Q 2

B ) + p(x) + p(y) + p(z) = 12. (1)

We first consider the case p(x) + p(z) > 10. It suffices to show that, after some pebbling moves,p((Q+

A )2) > 8 orp((Q+

B )2) > 8. Without loss of generality, we may assume that p(x) > p(z). If p(x) > max{p(z), 5}, then p(x) +


p(z)
2


> 8,

and this impliesp((Q+

A )2) > 8. Now suppose that p(x) = p(z) = 5. If p(Q 2
A ) = p(Q 2

B ) = 0, then p(y) = 2. Moving one
pebble from y to x, we havep(x) > 5, and the previous case applies. Otherwise, suppose without loss of generality that Q 2

A
has at least one pebble; now 2 pebbles can be moved from z to x to obtainp((Q+

A )2) > 8.
Next, we consider the case p(x) + p(z) < 10. Obviously, ifp(Q 2

A ) > 5 orp(Q 2
B ) > 5, then we are done. Ifp(Q 2

A ) < 5 andp(Q 2
B ) < 5, then

p(Q 2
A ) +


p(y)
2


+

p(x) +


p(z)
2


2

 6 4 (2)

and

p(Q 2
B ) +


p(y)
2


+

p(z) +


p(x)
2


2

 6 4. (3)

(2) and (3) result frommoving asmany pebbles as possible from x, y, z to a4 and b4, respectively.We see that z can contribute
pebbles not only to x, but also to y. If p(z) > 2, then we can move pebbles from z to x and y to make at least one ofp(x) andp(y) be even. So (2) can be rewritten as p(Q 2

A ) +


p(x)+p(y)+


p(z)
2


2


6 4 for p(z) > 2.

For the case min{p(x), p(z)} > 2, we have

p(Q 2
A ) +

p(x) + p(y) +


p(z)
2


2

 6 4 and p(Q 2
B ) +

p(z) + p(y) +


p(x)
2


2

 6 4. (4)
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