Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Vertex-disjoint triangles in $K_{1,t}$ -free graphs with minimum degree at least t

Xin Zhang, Na Li, Jian-Liang Wu*, Jin Yan

School of Mathematics, Shandong University, Jinan, 250100, China

ARTICLE INFO

Article history: Received 31 December 2009 Received in revised form 5 June 2010 Accepted 7 June 2010 Available online 5 July 2010

Keywords: $K_{1,t}$ -free graph Disjoint Triangle Ramsey number

1. Introduction

ABSTRACT

A graph is said to be $K_{1,t}$ -free if it does not contain an induced subgraph isomorphic to $K_{1,t}$. Let h(t, k) be the smallest integer m such that every $K_{1,t}$ -free graph of order greater than m and with minimum degree at least t contains k vertex-disjoint triangles. In this paper, we obtain a lower bound of h(t, k) by a constructive method. According to the lower bound, we totally disprove the conjecture raised by Hong Wang [H. Wang, Vertex-disjoint triangles in claw-free graphs with minimum degree at least three, Combinatorica 18 (1998) 441–447]. We also obtain an upper bound of h(t, k) which is related to Ramsey numbers R(3, t). In particular, we prove that h(4, k) = 9(k - 1) and h(5, k) = 14(k - 1).

© 2010 Elsevier B.V. All rights reserved.

In this paper, all graphs are finite, simple and undirected. Let *G* be a graph. We use V(G), E(G), $\delta(G)$ and $\Delta(G)$ to denote the vertex set, the edge set, the minimum degree and the maximum degree of *G*. If $uv \in E(G)$, then *u* is said to be the *neighbor* of *v*. We use N(v) to denote the set of neighbors of a vertex *v*. The *degree* d(v) = |N(v)|. For a subset *U* of V(G), G[U] denotes the subgraph of *G* induced by *U*. The *join* $G = G_1 \vee G_2$ of graph G_1 and G_2 with disjoint vertex sets V_1 and V_2 and edge sets E_1 and E_2 is the graph $G_1 \bigcup G_2$ together with all the edges jointing V_1 and V_2 . For any positive integers *k* and *l*, the *Ramsey number* R(k, l) is the smallest integer *n* such that every graph on *n* vertices contains either a clique of *k* vertices or an independent set of *l* vertices. By the definition of R(k, l) - 1 vertices that contains neither a clique of *k* vertices nor an independent set of *l* vertices and we call C_3 a triangle. We use *mQ* to represent *m* vertex-disjoint copies of graph Q. Other notations can be found in [1].

 $K_{1,t}$ is the star of order t + 1. A graph is said to be $K_{1,t}$ -free if it does not contain an induced subgraph isomorphic to $K_{1,t}$ ($t \ge 2$). Let h(t, k) be the smallest integer m such that every $K_{1,t}$ -free graph of order greater than m and with minimum degree at least t contains k vertex-disjoint triangles. Wang [5] proved that h(3, k) = 6(k - 1) for any $k \ge 2$, and he put forward the following conjecture.

Conjecture 1 ([5]). For each integer $t \ge 4$, there exists an integer k_t depending on t only such that h(t, k) = 2t(k - 1) for all integers $k \ge k_t$.

In Section 2, we get a proper lower bound of h(t, k) by a constructive method that $h(4, k) \ge 9(k - 1)$ and $h(t, k) \ge (4t - 9)(k - 1)$ for any $t \ge 5$. Since 4t - 9 > 2t for any $t \ge 5$, we totally disprove Conjecture 1. In Section 3, we give an upper bound of h(t, k), which is related to R(3, t). In particular, we prove that h(4, k) = 9(k - 1) and h(5, k) = 14(k - 1). In Section 4, we give some remarks on h(t, k) and list some interesting open problems. The paper ends with one conjecture.

* Corresponding author. E-mail address: jlwu@sdu.edu.cn (J.-L. Wu).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2010.06.013

2. A lower bound of h(t, k)

Let $G_{n,m}$ be the graph whose vertices are 0, 1, ..., n-1 where two vertices *i* and *j* are adjacent if and only if $(i - j) \in \{\pm m, \pm (m + 1), ..., \pm (2m - 1)\}$.

Lemma 1 ([4]). If $n \ge 6m-2$ then $G_{n,m}$ is a triangle-free regular graph whose degree is equal to 2m. Furthermore, if $n \le 8m-3$, then the independent number of $G_{n,m}$ is equal to 2m.

Similarly, we define $H_{n,m}$ to be the graph whose vertices are 0, 1, ..., n-1 where two vertices i and j are adjacent if and only if $(i-j) \in \{\pm m, \pm (m+1), \ldots, \pm (2m-1), \pm \lfloor \frac{n}{2} \rfloor\}$.

Lemma 2. $H_{8m-2,m}$ is a triangle-free regular graph whose degree is equal to 2m + 1 and its independent number is equal to 2m + 1.

Proof. Suppose, to the contrary, that $H_{8m-2,m}$ contains a triangle, say $t_0t_1t_2t_0$ where $0 \le t_0 < t_1 < t_2 \le 8m - 3$. Then $t_j - t_i \in \{m, m + 1, ..., 2m - 1, 4m - 1\}$ for $0 \le i < j \le 2$. So $t_2 - t_0 = (t_2 - t_1) + (t_1 - t_0) \ge m + m = 2m$ which implies that $t_2 - t_0 = 4m - 1$. Since $t_i \ne t_j$ for $0 \le i < j \le 2$, $t_1 - t_0 \le 2m - 1$ and $t_2 - t_1 \le 2m - 1$. This implies that $t_2 - t_0 = (t_2 - t_1) + (t_1 - t_0) \le 4m - 2$, a contradiction. So $H_{8m-2,m}$ is a triangle-free graph.

Let $S = \{\pm m, \pm (m + 1), \dots, \pm (2m - 1), 4m - 1\}$. Then for any $i, j \in S$, $(i - j) \notin S$. Since |S| = 2m + 1, $\alpha(H_{8m-2,m}) \ge 2m + 1$.

Consider 2m + 1 numbers $0 \le t_0 < t_1 < \cdots < t_{2m} \le n-1$ and suppose that $(t_j - t_i) \notin \{\pm m, \pm (m+1), \dots, \pm (2m-1)\}$ for any *i* and *j*. Put $s_i = t_{i+1} - t_i$ ($i = 1, 2, \dots, 2m - 1$), $s_0 = n + t_0 - t_{2m}$. It is clear that $s_i \le m - 1$ or $s_i \ge 2m$ for any $i = 0, 1, \dots, 2m - 1$. Let *r* be equal to the number of members s_i which satisfy $s_i \ge 2m$. If $r \ge 3$, then $n \ge r \cdot 2m + (2m + 1 - r) \cdot 1 = r(2m - 1) + 2m + 1 \ge 8m - 2$, that contradicts the assumption of the lemma. If $r \le 2$ then there exists *i* such that $s_{i+j} < m$ for every $j = 0, 1, \dots, m - 1$ (we mean that $s_{2m+1} = s_0, s_{2m+2} = s_1, \dots$). Denote $p_0 = 0, p_j = s_i + s_{i+1} + \cdots + s_{i+j-1}$ ($j = 1, 2, \dots, m$). Hence $p_j \equiv (t_{i+j} - t_i) \pmod{n}$. Since every $s_{i+j} \ge 1, p_m \ge m$. Let $j = \min\{l : p_l \ge m\}$. So $p_j \ge m, p_{j-1} \le m - 1, p_j = p_{j-1} + s_{i+j} \le (m - 1) + (m - 1) \le 2m - 1$. Therefore, $(t_i - t_{i+j}) \in \{\pm m, \pm (m + 1), \dots, \pm (2m - 1)\}$, which leads to a contradiction. \Box

Theorem 3. *For each integer* $k \ge 2$, $h(4, k) \ge 9(k - 1)$.

Proof. Let *W* be a wheel of order 9. Label *W*'s center by v_0 and its neighbors by v_1, v_2, \ldots, v_8 . Let *H* be a graph obtained from *W* by adding two edges v_1v_5 and v_2v_6 . It is obvious that *H* does not contain two vertex-disjoint triangles. Set $P(H) = \{v_3, v_4, v_7, v_8\}$. Let Π_k be the set of graphs of order 9(k - 1) such that a graph *G* belongs to Π_k if and only if it is obtained from k - 1 vertex-disjoint copies H_1, \ldots, H_{k-1} of *H* by adding 2(k - 1) new edges on $\bigcup_{i=1}^{k-1} P(H_i)$ so that these new edges form a perfect matching. It is easy to check that every graph *H* belonging to \prod_k is the $K_{1,4}$ -free graph which contains at most k - 1 vertex-disjoint triangles and $\delta(G) \ge 4$. So $h(4, k) \ge 9(k - 1)$.

Theorem 4. For each integers $t \ge 5$ and $k \ge 2$,

$$h(t, k) \ge \begin{cases} (4t - 6)(k - 1), & \text{if } t \text{ is odd;} \\ (4t - 9)(k - 1), & \text{if } t \text{ is even.} \end{cases}$$

Proof. Let $G = (k - 1)(K_1 \vee G_{8m-3,m})$. Then |V(G)| = (8m - 2)(k - 1) and $\delta(G) = 2m + 1$. By Lemma 1, *G* is a $K_{1,2m+1}$ -free graph which contains at most k - 1 vertex-disjoint triangles. So $h(2m + 1, k) \ge (8m - 2)(k - 1)$. Let t = 2m + 1. Then $h(t, k) \ge (4t - 6)(k - 1)$. Similarly, we put $H = (k - 1)(K_1 \vee H_{8m-2,m})$. Then |V(G)| = (8m - 1)(k - 1) and $\delta(G) = 2m + 2$. By Lemma 2, *H* is a $K_{1,2m+2}$ -free graph which contains at most k - 1 vertex-disjoint triangles. So we also have $h(2m + 2, k) \ge (8m - 1)(k - 1)$. Let t = 2m + 2. Then $h(t, k) \ge (4t - 9)(k - 1)$. \Box

By Theorems 3 and 4, we totally disprove Conjecture 1.

3. An upper bound of h(t, k)

In this section, we continue to consider $K_{1,t}$ -free graphs and give an upper bound of h(t, k). First, we introduce a useful lemma, which is known as *Ramsey's Theorem*.

Lemma 5 ([1] (Ramsey's Theorem)). For any two integers $k \ge 2$ and $l \ge 2$, $R(k, l) \le R(k, l-1) + R(k-1, l)$. Furthermore, if R(k, l-1) and R(k-1, l) are both even, then the strict inequality holds.

In [2] (also see page 7 in [3]), Burr et al. proved that $R(k, t) \ge R(k - 1, t) + 2t - 3$ for $k, t \ge 3$. It follows that $R(3, t) \ge R(2, t - 1) + 2t - 3 = 3t - 3$ for $t \ge 3$. So we have the following lemma.

Lemma 6. For each integer $t \ge 4$, max $\left\{ \left\lfloor \frac{3(t-1)}{2} \right\rfloor, 2t-2, \frac{5}{2}t-4, 3t-6 \right\} \le R(3, t-1) + t - 4.$

Download English Version:

https://daneshyari.com/en/article/4648270

Download Persian Version:

https://daneshyari.com/article/4648270

Daneshyari.com