

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A new expression for matching polynomials*

F.M. Dong

Mathematics and Mathematics Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore

ARTICLE INFO

Article history:
Received 13 January 2011
Received in revised form 15 November 2011
Accepted 15 November 2011
Available online 7 January 2012

Keywords: Graph Matrix Matching Matching polynomial

ABSTRACT

Let G be an arbitrary simple graph. Godsil and Gutman in 1978 and Yan et al. in 2005 established different expressions for the matching polynomial $\mu(G,x)$ in terms of $\det(xI_n-H)$ for some families of matrices H. This paper improves their results and simplifies the computation of $\mu(G,x)$.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider simple graphs (i.e., a graph with no loops and parallel edges) only. For any graph G, let V(G), E(G) and v(G) be its vertex set, edge set and order (i.e., v(G) = |V(G)|), respectively. If it is not mentioned elsewhere in this paper, we always assume that G is a simple graph with vertex set $V = \{v_1, v_2, \ldots, v_n\}$ and edge set $E = \{e_1, e_2, \ldots, e_\epsilon\}$, where $\epsilon = |E|$. A matching of G is a subset M of E such that each vertex of G is incident with at most one edge in G. For any integer G is equal to G denote the number of matchings G of G with G is clear that G denote the number of matchings G of G with G is a subset G of matching polynomial is G is a subset G of G with G is a subset G of G is a subset G of G is a subset G of G with G is a subset G of G of G is a subset G of G is a subset G of G is a subset G of G of G of G is a subset G of G of

$$\mu(G, x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \phi_k(G) x^{n-2k}. \tag{1.1}$$

This polynomial is also called the acyclic polynomial (see [4]). Throughout this paper, this polynomial $\mu(G, x)$ will be referred to as the matching polynomial of G.

Godsil and Gutman [2] showed that

$$\mu(G, x) = 2^{-\epsilon} \sum_{w} \det(xI_n - A(w)), \tag{1.2}$$

where the summation ranges over all 2^{ϵ} distinct ϵ -tuples $w=(w_1,w_2,\ldots,w_{\epsilon}), w_j\in\{1,-1\}$ and the matrix $A(w)=(a_{j,k})$ with the tuple $w=(w_1,w_2,\ldots,w_{\epsilon})$ is defined as follows: $a_{j,k}=w_s$ if v_jv_k is the edge e_s and $a_{j,k}=0$ if $v_jv_k\not\in E$ for all j,k. Yan et al. [7] obtained a similar result that

$$\mu(G, x) = 2^{-\epsilon} \sum_{G^e} \det(xI_n + iA(G^e)), \tag{1.3}$$

[☆] Supported by NIE AcRf funding (RI 5/06 DFM) of Singapore. E-mail address: fengming.dong@nie.edu.sg.

where the sum ranges over all 2^e orientations G^e of G, i is the complex number with $i^2 = -1$ (i will be used to denote this number throughout this paper) and $A(G^e) = (a_{j,k})$ is the matrix defined as follows: $a_{j,k} = 1$ if (v_j, v_k) is an arc in G^e , $a_{i,k} = -1$ if (v_k, v_j) is an arc in G^e and $a_{i,k} = 0$ otherwise.

This paper generalizes the above results by showing that if F is a subset of E such that every pair of cycles in G - F (i.e., the subgraph obtained from G by removing all edges in F) are edge-disjoint, then

$$\mu(G, x) = 2^{-|F|} \sum_{n} \det(xI_n - B), \tag{1.4}$$

where the sum ranges over all matrices in a set of $2^{|F|}$ matrices $B = (b_{j,k})$ with the property that $b_{j,k} \times b_{k,j} = 1$ when $v_j v_k \in E$ and $b_{j,k} = b_{k,j} = 0$ otherwise (see Corollary 2.2). When F = E, this result implies (1.2) and (1.3).

2. Main result

For any graph G, let $\mathcal{M}(G)$ be the set of matrices $(a_{j,k})_{n\times n}$ such that $a_{j,k}a_{k,j}=1$ if $v_jv_k\in E$ and $a_{j,k}=a_{k,j}=0$ otherwise. Note that $(a_{j,k})\in \mathcal{M}(G)$ is an adjacency matrix of G if $a_{j,k}=1$ whenever $v_jv_k\in E$. It is well known (see [4–6]) that $\mu(G,x)=\det(xI_n-A)$ if G is a forest and A is an adjacency matrix of G. This result is actually a particular case of the following result due to Graovac and Polanksy [3].

Theorem 2.1 ([3]). Let G be a graph in which every pair of cycles are edge-disjoint and $A = (a_{j,k})$ be any matrix in $\mathcal{M}(G)$. Assume that for every cycle $C : v_{r_1}v_{r_2}\cdots v_{r_s}v_{r_1}$ in G, the following condition always holds:

$$a_{r_1,r_2},a_{r_2,r_3},\ldots,a_{r_s,r_1}\in\{1,-1,i,-i\}\quad\text{and}\quad a_{r_1,r_2}^2a_{r_2,r_3}^2\cdots a_{r_s,r_1}^2=-1.$$

Then $\mu(G, x) = \det(xI_n - A)$. \square

By Theorem 2.1, if *G* is a forest, then $\mu(G, x) = \det(xI_n - A)$ holds for every matrix $A \in \mathcal{M}(G)$.

For G = (V, E), where $V = \{v_1, v_2, \dots, v_n\}$, assign every $e \in E$ a non-zero complex number w_e . We call $\{w_e\}_{e \in E}$ the weight-function of E, denoted by \mathbf{w}_G (or simply by \mathbf{w}). Let $\mathcal{M}(G, \mathbf{w})$ be the set of $(n \times n)$ -matrices $(a_{j,k})$ satisfying the condition below:

$$\begin{cases} a_{j,k} \in \{w_e, -w_e\}, & \text{if } j < k \text{ and } v_j v_k = e \in E; \\ a_{j,k} = 1/a_{k,j}, & \text{if } j > k \text{ and } v_j v_k \in E; \\ a_{j,k} = 0, & \text{otherwise.} \end{cases}$$
 (2.1)

Note that $\mathcal{M}(G, \mathbf{w})$ contains exactly $2^{|E|}$ matrices and $\mathcal{M}(G, \mathbf{w}) \subseteq \mathcal{M}(G)$.

By the notation of a weight-function $\mathbf{w} = \{w_e\}_{e \in E}$, the result of (1.2) due to Godsil and Gutman [2] is equivalent to the expression below with $w_e = 1$ for all $e \in E$:

$$\mu(G, x) = 2^{-|E|} \sum_{A \in \mathcal{M}(G, \mathbf{w})} \det(xI_n - A). \tag{2.2}$$

The result of (1.3) due to Yan et al. [7] is also equivalent to (2.2) with $w_e = i$ for all $e \in E$. We shall show that (2.2) actually always holds as long as $w_e \neq 0$ for all $e \in E$.

Let G = (V, E) be any graph with $V = \{v_1, v_2, \dots, v_n\}$ and weight-function $\mathbf{w} = \{w_e\}_{e \in E}$, F be a subset of E and $A = (a_{j,k})$ be an $n \times n$ matrix with $a_{j,k} \neq 0$, whenever $v_j v_k \in E$. Let

$$g_F(G) = \{G - F - \{v_i, v_k : v_i v_k \in F'\} : F' \subseteq F\},\tag{2.3}$$

where G-F-V' is the subgraph of G-F after deleting all vertices in V', and $\mathcal{M}_F(A)$ be the set of matrices $(d_{j,k})_{n\times n}$ satisfying the following condition:

$$\begin{cases}
d_{j,k} \in \{a_{j,k}, -a_{j,k}\}, & \text{if } j < k \text{ and } v_j v_k \in F; \\
d_{j,k} = 1/d_{k,j}, & \text{if } k < j \text{ and } v_j v_k \in F; \\
d_{i,k} = a_{i,k}, & \text{otherwise.}
\end{cases}$$
(2.4)

Note that $G - F \in \mathcal{G}_F(G)$ and every graph of $\mathcal{G}_F(G)$ is a subgraph of G - F. It is also clear that $|\mathcal{M}_F(A)| = 2^{|F|}$. Note that if $A \in \mathcal{M}(G)$, then $A \in \mathcal{M}_F(A) \subseteq \mathcal{M}(G)$ for any $F \subseteq E$.

For any $n \times n$ matrix $A = (a_{j,k})$ and any non-empty subset I of $\{1, 2, ..., n\}$, let A[I] be the matrix obtained from A by removing rows $s_1, s_2, ..., s_r$ and columns $s_1, s_2, ..., s_r$, where $\{s_1, s_2, ..., s_r\} = \{1, 2, ..., n\} - I$.

¹ This result was explained in [3]. It may have also appeared in some other articles.

Download English Version:

https://daneshyari.com/en/article/4648291

Download Persian Version:

https://daneshyari.com/article/4648291

<u>Daneshyari.com</u>