Quotients of the deformation of Veronesean dual hyperoval in $\operatorname{PG}(3 d, 2)$
 Hiroaki Taniguchi
 Kagawa National College of Technology, 551 Takuma, Kagawa, 769-1192, Japan

A R T I CLE INFO

Article history:

Available online 27 March 2011

Keywords:

Dual hyperoval
Veronesean
Quotient

Abstract

Let $d \geq 3$. In $\operatorname{PG}(d(d+3) / 2,2)$, there are four known non-isomorphic d-dimensional dual hyperovals by now. These are Huybrechts' dual hyperoval by Huybrechts (2002) [4], Buratti-Del Fra's dual hyperoval by Buratti and Del Fra (2003) [1], Del Fra and Yoshiara (2005) [3], Veronesean dual hyperoval by Thas and van Maldeghem (2004) [9], Yoshiara (2004) [12] and the dual hyperoval, which is a deformation of Veronesean dual hyperoval by Taniguchi (2009) [6].

In this paper, using a generator σ of the Galois group $\operatorname{Gal}\left(G F\left(2^{d m}\right) / G F(2)\right)$ for some $m \geq 3$, we construct a d-dimensional dual hyperoval T_{σ} in $P G(3 d, 2)$, which is a quotient of the dual hyperoval of [6]. Moreover, for generators $\sigma, \tau \in \operatorname{Gal}\left(G F\left(2^{d m}\right) / G F(2)\right)$, if T_{σ} and T_{τ} are isomorphic, then we show that $\sigma=\tau$ or $\sigma=\tau^{-1}$ on $G F\left(2^{d}\right)$. Hence, we see that there are many non-isomorphic quotients in $\operatorname{PG}(3 d, 2)$ for the dual hyperoval of [6] if d is large.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let d, n be integers with $d \geq 2$ and $n>d$. Let $P G(n, 2)$ be an n-dimensional projective space over the binary field $G F(2)$.
Definition 1. A family S of d-dimensional subspaces of $P G(n, 2)$ is a d-dimensional dual hyperoval in $P G(n, 2)$ if it satisfies the following conditions:
(d1) any two distinct members of S intersect in a projective point,
(d2) any three mutually distinct members of S intersect in the empty projective set,
(d3) the members of S generate $\operatorname{PG}(n, 2)$, and
(d4) there are exactly 2^{d+1} members of S.
The definition of higher dimensional dual hyperovals was first given by Huybrechts and Pasini in [5]. We call PG(n,2) of (d3) above the ambient space of the dual hyperoval S. For d-dimensional dual hyperovals S_{1} and S_{2} in $P G(n, 2)$, we say that S_{1} is isomorphic to S_{2} by the mapping Φ, if Φ is a linear automorphism of $P G(n, 2)$ which sends the members of S_{1} onto the members of S_{2}.

In case $d=2$, d-dimensional dual hyperovals over $G F$ (2) are completely classified by Del Fra [2]. Hence, from now on, we assume that $d \geq 3$. In [6], a new d-dimensional dual hyperoval S in $\operatorname{PG}(d(d+3) / 2,2)$ for $d \geq 3$ was constructed using the Veronesean dual hyperoval. In this paper, we construct quotients of the dual hyperoval S of $[6]$ in $P G(3 d, 2)$. Moreover, we show that there exist many non-isomorphic quotients in $P G(3 d, 2)$ if d is large.

2. Preliminaries

In this section, we recall the construction of the dual hyperoval S in [6] and present the theorems which we prove in this paper.

[^0]Let $n \geq d+1$ and σ a generator of the Galois group $\operatorname{Gal}\left(G F\left(2^{n}\right) / G F(2)\right)$, where $G F\left(2^{n}\right)$ is a finite field consists of 2^{n} elements. Let H be a $(d+1)$-dimensional $G F(2)$-vector subspace of $G F\left(2^{n}\right)$ with a basis $\left\{e_{0}, e_{1}, \ldots, e_{d}\right\}$. We denote by H^{\times} the set consists of non-zero elements of H.

Let $b(s, t) \in G F\left(2^{n}\right) \oplus G F\left(2^{n}\right)$ for $s, t \in H^{\times}$, which satisfies the following conditions:
(b1) $b(s, s)=\left(s^{2}, 0\right)$,
(b2) $b(s, t)=b(t, s)$ for any s, t,
(b3) $b(s, t) \neq(0,0)$, and
(b4) $b(s, t)=b\left(s^{\prime}, t^{\prime}\right)$ if and only if $\{s, t\}=\left\{s^{\prime}, t^{\prime}\right\}$,
(b5) $\left\{b(s, t) \mid t \in H^{\times}\right\} \cup\{(0,0)\}$ is a vector space over $G F(2)$.
From these $\left\{b(s, t) \mid s, t \in H^{\times}\right\}$, we have a dual hyperoval S, as follows.
Proposition 2. Inside $P G(2 n-1,2)=\left(G F\left(2^{n}\right) \oplus G F\left(2^{n}\right)\right) \backslash\{(0,0)\}$, let us define $X(s):=\left\{b(s, t) \mid t \in H^{\times}\right\}$for $s \in H^{\times}$, and $X(\infty):=\left\{b(s, s) \mid s \in H^{\times}\right\}$. Then, $X(s)$ and $X(\infty)$ are d-dimensional subspaces of $P G(2 n-1,2)$, and $S:=\left\{X(s) \mid s \in H^{\times}\right\} \cup\{X(\infty)\}$ is a d-dimensional dual hyperoval.

Proof. Since the cardinality $|X(s) \cup\{(0,0)\}|=2^{d+1}$ by (b3) and (b4), we see, by (b5), that $X(s)$ is a d-dimensional subspace of $P G(2 n-1,2)$ for $s \in H^{\times}$. By (b1), $X(\infty)$ is a d-dimensional subspace of $P G(2 n-1,2)$. For distinct $s, t \in H^{\times}$, we have $X(s) \cap X(t)=b(s, t)$ by (b2)-(b4). For $s \in H^{\times}$, we have $X(s) \cap X(\infty)=b(s, s)$ by (b1), (b3) and (b4). Since $X(s) \cap X(t)=b(s, t)$ and $X(s) \cap X(\infty)=b(s, s)$ for $s, t \in H^{\times}$with $s \neq t$, no three distinct d-subspaces of S have a common point by (b4). We have the cardinality $|S|=\left|\left\{X(s) \mid s \in H^{\times}\right\}\right|+|\{X(\infty)\}|=2^{d+1}$. Hence, S is a d-dimensional dual hyperoval.

Example 3 (Veronesean Dual Hyperoval). Let n be a sufficient large integer, and let us choose a ($d+1$)-dimensional GF(2)vector subspace H of $G F\left(2^{n}\right)$ with a basis $\left\{e_{0}, e_{1}, \ldots, e_{d}\right\}$ such that $\left\{e_{i} e_{j} \mid 0 \leq i \leq j \leq d\right\}$ are linearly independent over $G F(2)$. Let σ be a generator of the Galois group $\operatorname{Gal}\left(G F\left(2^{n}\right) / G F(2)\right)$. We define $b(s, t)$ for $s, t \in H^{\times}$as

$$
b(s, t):=\left(s t, s^{\sigma} t+s t^{\sigma}\right)
$$

Then, we easily see that $b(s, t)$ satisfies the conditions (b1)-(b5); hence, we have a d-dimensional dual hyperoval S, which generates $P G(d(d+3) / 2,2)=P G(R)$, where R is the vector space generated by $\left\{\left(e_{i} e_{j}, e_{i}^{\sigma} e_{j}+e_{i} e_{j}^{\sigma}\right) \mid 0 \leq i \leq j \leq d\right\}$ in $G F\left(2^{n}\right) \oplus G F\left(2^{n}\right)$ (see [6,10] for detail). Yoshiara [10] proved that S is isomorphic to the Veronesean dual hyperoval constructed by Thas and Van Maldeghem in [9]. We note that $\{b(s, t)\}$ satisfies the following addition formula for $s, t_{1}, t_{2} \in$ H^{\times}with $t_{1} \neq t_{2}: b\left(s, t_{1}\right)+b\left(s, t_{2}\right)=b\left(s, t_{1}+t_{2}\right)$.

For a non-zero vector u of H, its support, denoted as $\operatorname{Supp}(u)$, is the subset M of $\left\{e_{0}, e_{1}, \ldots, e_{d}\right\}$ for which $u=\sum_{e_{i} \in M} e_{i}$. Let $H^{\prime} \subset H$ be the vector subspace generated by $\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$ over $G F(2)$, and let

$$
\begin{equation*}
H \ni s=\sum_{i=0}^{d} \alpha_{i} e_{i} \mapsto \bar{s}=\sum_{i=1}^{d} \alpha_{i} e_{i} \in H^{\prime} \tag{1}
\end{equation*}
$$

be the natural projection, where $\alpha_{i} \in G F(2)$ for $0 \leq i \leq d$.
Definition 4 ([6]). Let χ be the characteristic function of $H^{\prime} \backslash\{0\}$, that is, χ is a map from H^{\prime} to $G F(2)$ defined by $\chi(v)=0$ or 1 according to whether $v=0$ or not. We use the symbol $J(u)$ for $u \in H$ to denote $\{0\}$ if $\bar{u}=0$, or $\operatorname{Supp}(\bar{u})$ if $\bar{u} \neq 0$. With this convention, we define the following function from $H \times H$ to $G F(2)$ determined by the basis $\left\{e_{0}, e_{1}, \ldots, e_{d}\right\}$ of H :

$$
x_{s, t}:=\chi(\bar{s}+\bar{t})+\sum_{w \in J(t)} \chi(\bar{s}+w) .
$$

Then $x_{s, t} \in G F(2)$ for $s, t \in H$ and satisfies the following conditions:
$(\mathrm{x} 1) x_{s, t}=x_{s, t+e_{0}}=x_{s+e_{0}, t}=x_{s+e_{0}, t+e_{0}}$,
(x2) $x_{s, w}=0$ for $w \in\left\{0, e_{0}, e_{1}, \ldots, e_{d}\right\}$,
(x3) $x_{s, t}+x_{s, s}=x_{s, s+t}$,
(x4) $x_{s, s}=x_{w, s}$ for $w \in \operatorname{Supp}(\bar{s})$ (we regard that $\operatorname{Supp}(\overline{0})=\{0\}$),
$(\mathrm{x} 5) x_{s, t}+x_{t, s}=x_{w, s}+x_{w, t}$ for $w \in \operatorname{Supp}(\bar{s}) \cap \operatorname{Supp}(\bar{t})$, and
$(\mathrm{x} 6) x_{\mathrm{s}, t}=x_{w, t}$ for $w \in \operatorname{Supp}(\bar{s}) \backslash \operatorname{Supp}(\bar{t})$.
Proof. (x1) is immediate by the definition of $x_{s, t}$. Since $J(w)=\{w\}$ for $w \in\left\{0, e_{1}, \ldots, e_{d}\right\}$, we have $x_{s, w}=\chi(\bar{s}+\bar{w})+$ $\sum_{w \in J(t)} \chi(\bar{s}+w)=\chi(\bar{s}+\bar{w})+\chi(\bar{s}+w)=0$ for $w \in\left\{0, e_{1}, \ldots, e_{d}\right\}$, and we have $x_{s, e_{0}}=x_{s, 0}=0$ by (x1); hence, we obtain (x 2). (x 3) is proved in Lemma 23 of Taniguchi [6], and (x 4)-(x 6) are proved in Lemma 24 of Taniguchi [6].

Using this $\left\{x_{s, t} \mid s, t \in H\right\}$, we define $b(s, t)$ for $s, t \in H$ as follows.

https://daneshyari.com/en/article/4648322

Download Persian Version:
https://daneshyari.com/article/4648322

Daneshyari.com

[^0]: E-mail address: taniguchi@dg.kagawa-nct.ac.jp.
 0012-365X/\$ - see front matter © 2011 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2011.02.033

