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a b s t r a c t

Let d ≥ 3. In PG(d(d + 3)/2, 2), there are four known non-isomorphic d-dimensional
dual hyperovals by now. These are Huybrechts’ dual hyperoval by Huybrechts (2002) [4],
Buratti-Del Fra’s dual hyperoval by Buratti and Del Fra (2003) [1], Del Fra and Yoshiara
(2005) [3], Veronesean dual hyperoval by Thas and van Maldeghem (2004) [9], Yoshiara
(2004) [12] and the dual hyperoval, which is a deformation of Veronesean dual hyperoval
by Taniguchi (2009) [6].

In this paper, using a generator σ of the Galois group Gal(GF(2dm)/GF(2)) for some
m ≥ 3, we construct a d-dimensional dual hyperoval Tσ in PG(3d, 2), which is a quotient of
the dual hyperoval of [6]. Moreover, for generators σ , τ ∈ Gal(GF(2dm)/GF(2)), if Tσ and
Tτ are isomorphic, then we show that σ = τ or σ = τ−1 on GF(2d). Hence, we see that
there are many non-isomorphic quotients in PG(3d, 2) for the dual hyperoval of [6] if d is
large.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let d, n be integers with d ≥ 2 and n > d. Let PG(n, 2) be an n-dimensional projective space over the binary field GF(2).

Definition 1. A family S of d-dimensional subspaces of PG(n, 2) is a d-dimensional dual hyperoval in PG(n, 2) if it satisfies
the following conditions:
(d1) any two distinct members of S intersect in a projective point,
(d2) any three mutually distinct members of S intersect in the empty projective set,
(d3) the members of S generate PG(n, 2), and
(d4) there are exactly 2d+1 members of S.

The definition of higher dimensional dual hyperovals was first given by Huybrechts and Pasini in [5]. We call PG(n, 2) of
(d3) above the ambient space of the dual hyperoval S. For d-dimensional dual hyperovals S1 and S2 in PG(n, 2), we say that
S1 is isomorphic to S2 by the mapping Φ , if Φ is a linear automorphism of PG(n, 2) which sends the members of S1 onto the
members of S2.

In case d = 2, d-dimensional dual hyperovals over GF(2) are completely classified by Del Fra [2]. Hence, from now on,
we assume that d ≥ 3. In [6], a new d-dimensional dual hyperoval S in PG(d(d + 3)/2, 2) for d ≥ 3 was constructed using
the Veronesean dual hyperoval. In this paper, we construct quotients of the dual hyperoval S of [6] in PG(3d, 2). Moreover,
we show that there exist many non-isomorphic quotients in PG(3d, 2) if d is large.

2. Preliminaries

In this section, we recall the construction of the dual hyperoval S in [6] and present the theorems which we prove in this
paper.
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Let n ≥ d + 1 and σ a generator of the Galois group Gal(GF(2n)/GF(2)), where GF(2n) is a finite field consists of 2n

elements. Let H be a (d + 1)-dimensional GF(2)-vector subspace of GF(2n) with a basis {e0, e1, . . . , ed}. We denote by H×

the set consists of non-zero elements of H .
Let b(s, t) ∈ GF(2n) ⊕ GF(2n) for s, t ∈ H×, which satisfies the following conditions:

(b1) b(s, s) = (s2, 0),
(b2) b(s, t) = b(t, s) for any s, t ,
(b3) b(s, t) ≠ (0, 0), and
(b4) b(s, t) = b(s′, t ′) if and only if {s, t} = {s′, t ′},
(b5) {b(s, t) | t ∈ H×

} ∪ {(0, 0)} is a vector space over GF(2).

From these {b(s, t) | s, t ∈ H×
}, we have a dual hyperoval S, as follows.

Proposition 2. Inside PG(2n − 1, 2) = (GF(2n) ⊕ GF(2n)) \ {(0, 0)}, let us define X(s) := {b(s, t) | t ∈ H×
} for

s ∈ H×, and X(∞) := {b(s, s) | s ∈ H×
}. Then, X(s) and X(∞) are d-dimensional subspaces of PG(2n − 1, 2), and

S := {X(s) | s ∈ H×
} ∪ {X(∞)} is a d-dimensional dual hyperoval.

Proof. Since the cardinality |X(s) ∪ {(0, 0)}| = 2d+1 by (b3) and (b4), we see, by (b5), that X(s) is a d-dimensional subspace
of PG(2n − 1, 2) for s ∈ H×. By (b1), X(∞) is a d-dimensional subspace of PG(2n − 1, 2). For distinct s, t ∈ H×, we have
X(s)∩X(t) = b(s, t)by (b2)–(b4). For s ∈ H×, wehaveX(s)∩X(∞) = b(s, s)by (b1), (b3) and (b4). SinceX(s)∩X(t) = b(s, t)
and X(s) ∩ X(∞) = b(s, s) for s, t ∈ H× with s ≠ t , no three distinct d-subspaces of S have a common point by (b4). We
have the cardinality |S| = |{X(s) | s ∈ H×

}| + |{X(∞)}| = 2d+1. Hence, S is a d-dimensional dual hyperoval. �

Example 3 (Veronesean Dual Hyperoval). Let n be a sufficient large integer, and let us choose a (d + 1)-dimensional GF(2)-
vector subspace H of GF(2n) with a basis {e0, e1, . . . , ed} such that {eiej | 0 ≤ i ≤ j ≤ d} are linearly independent over
GF(2). Let σ be a generator of the Galois group Gal(GF(2n)/GF(2)). We define b(s, t) for s, t ∈ H× as

b(s, t) := (st, sσ t + stσ ).

Then, we easily see that b(s, t) satisfies the conditions (b1)–(b5); hence, we have a d-dimensional dual hyperoval S, which
generates PG(d(d + 3)/2, 2) = PG(R), where R is the vector space generated by {(eiej, eσ

i ej + eieσ
j ) | 0 ≤ i ≤ j ≤ d}

in GF(2n) ⊕ GF(2n) (see [6,10] for detail). Yoshiara [10] proved that S is isomorphic to the Veronesean dual hyperoval
constructed by Thas and Van Maldeghem in [9]. We note that {b(s, t)} satisfies the following addition formula for s, t1, t2 ∈

H× with t1 ≠ t2 : b(s, t1) + b(s, t2) = b(s, t1 + t2).

For a non-zero vector u of H , its support, denoted as Supp(u), is the subsetM of {e0, e1, . . . , ed} for which u =
∑

ei∈M ei. Let
H ′

⊂ H be the vector subspace generated by {e1, e2, . . . , ed} over GF(2), and let

H ∋ s =

d−
i=0

αiei → s̄ =

d−
i=1

αiei ∈ H ′ (1)

be the natural projection, where αi ∈ GF(2) for 0 ≤ i ≤ d.

Definition 4 ([6]). Let χ be the characteristic function of H ′
\ {0}, that is, χ is a map from H ′ to GF(2) defined by χ(v) = 0

or 1 according to whether v = 0 or not. We use the symbol J(u) for u ∈ H to denote {0} if ū = 0, or Supp(ū) if ū ≠ 0. With
this convention, we define the following function from H × H to GF(2) determined by the basis {e0, e1, . . . , ed} of H:

xs,t := χ(s̄ + t̄) +

−
w∈J(t)

χ(s̄ + w).

Then xs,t ∈ GF(2) for s, t ∈ H and satisfies the following conditions:

(x1) xs,t = xs,t+e0 = xs+e0,t = xs+e0,t+e0 ,
(x2) xs,w = 0 for w ∈ {0, e0, e1, . . . , ed},
(x3) xs,t + xs,s = xs,s+t ,
(x4) xs,s = xw,s for w ∈ Supp(s̄) (we regard that Supp(0̄) = {0}),
(x5) xs,t + xt,s = xw,s + xw,t for w ∈ Supp(s̄) ∩ Supp(t̄), and
(x6) xs,t = xw,t for w ∈ Supp(s̄) \ Supp(t̄).

Proof. (x1) is immediate by the definition of xs,t . Since J(w) = {w} for w ∈ {0, e1, . . . , ed}, we have xs,w = χ(s̄ + w̄) +∑
w∈J(t) χ(s̄ + w) = χ(s̄ + w̄) + χ(s̄ + w) = 0 for w ∈ {0, e1, . . . , ed}, and we have xs,e0 = xs,0 = 0 by (x1); hence, we

obtain (x2). (x3) is proved in Lemma 23 of Taniguchi [6], and (x4)–(x6) are proved in Lemma 24 of Taniguchi [6]. �

Using this {xs,t | s, t ∈ H}, we define b(s, t) for s, t ∈ H as follows.
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