Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Quotients of the deformation of Veronesean dual hyperoval in PG(3d, 2)

Hiroaki Taniguchi

Kagawa National College of Technology, 551 Takuma, Kagawa, 769-1192, Japan

ARTICLE INFO

Article history: Available online 27 March 2011

Keywords: Dual hyperoval Veronesean Ouotient

ABSTRACT

Let d > 3. In PG(d(d + 3)/2, 2), there are four known non-isomorphic d-dimensional dual hyperovals by now. These are Huybrechts' dual hyperoval by Huybrechts (2002) [4], Buratti-Del Fra's dual hyperoval by Buratti and Del Fra (2003) [1], Del Fra and Yoshiara (2005) [3], Veronesean dual hyperoval by Thas and van Maldeghem (2004) [9], Yoshiara (2004) [12] and the dual hyperoval, which is a deformation of Veronesean dual hyperoval by Taniguchi (2009) [6].

In this paper, using a generator σ of the Galois group $Gal(GF(2^{dm})/GF(2))$ for some m > 3, we construct a d-dimensional dual hyperoval T_{σ} in PG(3d, 2), which is a quotient of the dual hyperoval of [6]. Moreover, for generators σ , $\tau \in Gal(GF(2^{dm})/GF(2))$, if T_{σ} and T_{τ} are isomorphic, then we show that $\sigma = \tau$ or $\sigma = \tau^{-1}$ on $GF(2^d)$. Hence, we see that there are many non-isomorphic quotients in PG(3d, 2) for the dual hyperoval of [6] if d is large.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let d, n be integers with d > 2 and n > d. Let PG(n, 2) be an n-dimensional projective space over the binary field GF(2).

Definition 1. A family S of d-dimensional subspaces of PG(n, 2) is a d-dimensional dual hyperoval in PG(n, 2) if it satisfies the following conditions:

(d1) any two distinct members of *S* intersect in a projective point,

- (d2) any three mutually distinct members of *S* intersect in the empty projective set,
- (d3) the members of *S* generate PG(n, 2), and (d4) there are exactly 2^{d+1} members of *S*.

The definition of higher dimensional dual hyperovals was first given by Huybrechts and Pasini in [5]. We call PG(n, 2) of (d3) above the ambient space of the dual hyperoval S. For d-dimensional dual hyperovals S_1 and S_2 in PG(n, 2), we say that S_1 is isomorphic to S_2 by the mapping Φ , if Φ is a linear automorphism of PG(n, 2) which sends the members of S_1 onto the members of S_2 .

In case d = 2, d-dimensional dual hyperovals over GF(2) are completely classified by Del Fra [2]. Hence, from now on, we assume that $d \ge 3$. In [6], a new d-dimensional dual hyperoval S in PG(d(d + 3)/2, 2) for $d \ge 3$ was constructed using the Veronesean dual hyperoval. In this paper, we construct quotients of the dual hyperoval S of [6] in PG(3d, 2). Moreover, we show that there exist many non-isomorphic quotients in PG(3d, 2) if d is large.

2. Preliminaries

In this section, we recall the construction of the dual hyperoval S in [6] and present the theorems which we prove in this paper.

E-mail address: taniguchi@dg.kagawa-nct.ac.jp.

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2011.02.033

Let $n \ge d + 1$ and σ a generator of the Galois group $Gal(GF(2^n)/GF(2))$, where $GF(2^n)$ is a finite field consists of 2^n elements. Let H be a (d + 1)-dimensional GF(2)-vector subspace of $GF(2^n)$ with a basis $\{e_0, e_1, \ldots, e_d\}$. We denote by H^{\times} the set consists of non-zero elements of H.

Let $b(s, t) \in GF(2^n) \oplus GF(2^n)$ for $s, t \in H^{\times}$, which satisfies the following conditions:

(b1) $b(s, s) = (s^2, 0)$,

(b2) b(s, t) = b(t, s) for any *s*, *t*,

(b3) $b(s, t) \neq (0, 0)$, and

(b4) b(s, t) = b(s', t') if and only if $\{s, t\} = \{s', t'\}$,

(b5) $\{b(s, t) \mid t \in H^{\times}\} \cup \{(0, 0)\}$ is a vector space over *GF*(2).

From these $\{b(s, t) \mid s, t \in H^{\times}\}$, we have a dual hyperoval *S*, as follows.

Proposition 2. Inside $PG(2n - 1, 2) = (GF(2^n) \oplus GF(2^n)) \setminus \{(0, 0)\}$, let us define $X(s) := \{b(s, t) \mid t \in H^{\times}\}$ for $s \in H^{\times}$, and $X(\infty) := \{b(s, s) \mid s \in H^{\times}\}$. Then, X(s) and $X(\infty)$ are d-dimensional subspaces of PG(2n - 1, 2), and $S := \{X(s) \mid s \in H^{\times}\} \cup \{X(\infty)\}$ is a d-dimensional dual hyperoval.

Proof. Since the cardinality $|X(s) \cup \{(0,0)\}| = 2^{d+1}$ by (b3) and (b4), we see, by (b5), that X(s) is a *d*-dimensional subspace of PG(2n - 1, 2) for $s \in H^{\times}$. By (b1), $X(\infty)$ is a *d*-dimensional subspace of PG(2n - 1, 2). For distinct $s, t \in H^{\times}$, we have $X(s) \cap X(t) = b(s, t)$ by (b2)–(b4). For $s \in H^{\times}$, we have $X(s) \cap X(\infty) = b(s, s)$ by (b1), (b3) and (b4). Since $X(s) \cap X(t) = b(s, t)$ and $X(s) \cap X(\infty) = b(s, s)$ for $s, t \in H^{\times}$ with $s \neq t$, no three distinct *d*-subspaces of *S* have a common point by (b4). We have the cardinality $|S| = |\{X(s) \mid s \in H^{\times}\}| + |\{X(\infty)\}| = 2^{d+1}$. Hence, *S* is a *d*-dimensional dual hyperoval. \Box

Example 3 (Veronesean Dual Hyperoval). Let *n* be a sufficient large integer, and let us choose a (d + 1)-dimensional GF(2)-vector subspace *H* of $GF(2^n)$ with a basis $\{e_0, e_1, \ldots, e_d\}$ such that $\{e_ie_j \mid 0 \le i \le j \le d\}$ are linearly independent over GF(2). Let σ be a generator of the Galois group $Gal(GF(2^n)/GF(2))$. We define b(s, t) for $s, t \in H^{\times}$ as

$$b(s,t) := (st, s^{\sigma}t + st^{\sigma}).$$

Then, we easily see that b(s, t) satisfies the conditions (b1)–(b5); hence, we have a *d*-dimensional dual hyperoval *S*, which generates PG(d(d + 3)/2, 2) = PG(R), where *R* is the vector space generated by $\{(e_ie_j, e_i^{\sigma}e_j + e_ie_j^{\sigma}) \mid 0 \le i \le j \le d\}$ in $GF(2^n) \oplus GF(2^n)$ (see [6,10] for detail). Yoshiara [10] proved that *S* is isomorphic to the Veronesean dual hyperoval constructed by Thas and Van Maldeghem in [9]. We note that $\{b(s, t)\}$ satisfies the following addition formula for $s, t_1, t_2 \in H^{\times}$ with $t_1 \ne t_2 : b(s, t_1) + b(s, t_2) = b(s, t_1 + t_2)$.

For a non-zero vector u of H, its support, denoted as Supp(u), is the subset M of $\{e_0, e_1, \ldots, e_d\}$ for which $u = \sum_{e_i \in M} e_i$. Let $H' \subset H$ be the vector subspace generated by $\{e_1, e_2, \ldots, e_d\}$ over GF(2), and let

$$H \ni s = \sum_{i=0}^{d} \alpha_i e_i \mapsto \bar{s} = \sum_{i=1}^{d} \alpha_i e_i \in H'$$
(1)

be the natural projection, where $\alpha_i \in GF(2)$ for $0 \le i \le d$.

Definition 4 ([6]). Let χ be the characteristic function of $H' \setminus \{0\}$, that is, χ is a map from H' to GF(2) defined by $\chi(v) = 0$ or 1 according to whether v = 0 or not. We use the symbol J(u) for $u \in H$ to denote $\{0\}$ if $\bar{u} = 0$, or $Supp(\bar{u})$ if $\bar{u} \neq 0$. With this convention, we define the following function from $H \times H$ to GF(2) determined by the basis $\{e_0, e_1, \ldots, e_d\}$ of H:

$$x_{s,t} := \chi(\bar{s} + \bar{t}) + \sum_{w \in J(t)} \chi(\bar{s} + w).$$

Then $x_{s,t} \in GF(2)$ for $s, t \in H$ and satisfies the following conditions:

(x1) $x_{s,t} = x_{s,t+e_0} = x_{s+e_0,t} = x_{s+e_0,t+e_0}$, (x2) $x_{s,w} = 0$ for $w \in \{0, e_0, e_1, \dots, e_d\}$, (x3) $x_{s,t} + x_{s,s} = x_{s,s+t}$, (x4) $x_{s,s} = x_{w,s}$ for $w \in Supp(\bar{s})$ (we regard that $Supp(\bar{0}) = \{0\}$), (x5) $x_{s,t} + x_{t,s} = x_{w,s} + x_{w,t}$ for $w \in Supp(\bar{s}) \cap Supp(\bar{t})$, and

(x6) $x_{s,t} = x_{w,t}$ for $w \in Supp(\bar{s}) \setminus Supp(\bar{t})$.

Proof. (x1) is immediate by the definition of $x_{s,t}$. Since $J(w) = \{w\}$ for $w \in \{0, e_1, \ldots, e_d\}$, we have $x_{s,w} = \chi(\bar{s} + \bar{w}) + \sum_{w \in J(t)} \chi(\bar{s} + w) = \chi(\bar{s} + \bar{w}) + \chi(\bar{s} + w) = 0$ for $w \in \{0, e_1, \ldots, e_d\}$, and we have $x_{s,e_0} = x_{s,0} = 0$ by (x1); hence, we obtain (x2). (x3) is proved in Lemma 23 of Taniguchi [6], and (x4)-(x6) are proved in Lemma 24 of Taniguchi [6]. \Box

Using this $\{x_{s,t} \mid s, t \in H\}$, we define b(s, t) for $s, t \in H$ as follows.

Download English Version:

https://daneshyari.com/en/article/4648322

Download Persian Version:

https://daneshyari.com/article/4648322

Daneshyari.com