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a b s t r a c t

Applying the Gale transform on certain linear and non-linear geometrical objects, and
studying the orbits under the action of the associated automorphism groups in the higher-
dimensional space, we construct some families of cap codes and other structures admitting
the same automorphism groups.
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1. Introduction

The Gale transform of a set T consisting of γ labelled points of a projective space PG(r, q) is an involution, defined up to
automorphisms, which maps T into a set T ′ consisting of γ labelled points of PG(s, q) with γ = r + s + 2.

The simplestway to define theGale transformof a set of points is in terms of projective coordinates. Choose homogeneous
coordinates in such a way that the coordinates of the points of T are the rows of the matrix

Ir+1
A


,

where In denotes the n × n identity matrix and A is an (s + 1) × (r + 1) matrix. Then, the Gale transform of T is the set T ′

consisting of the points of PG(s, q) whose homogeneous coordinates are the rows of the matrix
TA
Is+1


,

where TA is the transpose matrix of A.
The Gale transform has many geometrical and group-theoretical properties which make it a valuable tool in several

disciplines such as optimization, coding theory and algebraic geometry. Here we list some recent results that will be useful.
The interested reader is referred to [3,4] for proofs of the results and further details on the Gale transform.

Lemma 1.1. If ℓ is a line in some projective space PG(r, q) and T ⊆ ℓ, with |T | = r + s + 2, then the Gale transform T ′ of T
is contained in the unique normal rational curve of PG(s, q) containing the fundamental frame.
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Lemma 1.2. The Gale transform of a k-cap in a projective space PG(r, q), k ≥ r + 4, is a k-cap in PG(k − r − 2, q).

Lemmas 1.1 and 1.2 together yield the following crucial result.

Theorem 1.3. Let T be any set consisting of k points in PG(r, q), r ≥ 2 and k ≥ r + 4. Then the Gale transform T ′ of T is a
k-cap in PG(k − r − 2, q).

When constructing an error correcting code, it is convenient to have some control on its automorphism group. The
following result generalizing [3, Proposition 2.5] provides a useful tool for this task.

Theorem 1.4. Let T be any subset of PG(r, q) consisting of at least k = r + 4 points and T ′ its Gale transform. Then T and T ′

have isomorphic collineation groups.

Proof. Let T = {p1, . . . , pk}. The (r + 1) × kmatrix (p1 . . . pk) determines a vector subspace V = V (r + 1, q) in the vector
space V (k, q). This is due to the fact that T always contains the fundamental frame of PG(r, q). The Gale transform of T
produces a new set in PG(k − r − 2, q) containing the fundamental frame which generates the orthogonal complement V⊥

of V in V (k, q). The theorem now follows from [11, Theorem 2.1]. �

The main idea in this paper is to use the Gale transform of some remarkable objects in projective spaces to construct
other interesting objects and possibly study the associated linear codes.

An interesting question that can be posed is the following.When does it happen that the Gale transform of a subset of the
projective space is embedded in a Veronese variety? This fact is relevant because a Veronese variety is always a cap and its
extensions could give rise to interesting cap codes. In this paper we have studied the cases of a classical unital in a projective
plane of order q = 4, a distinguished 1-set in PG(3, 4), a Baer subplane in PG(2, 4) and a Baer subplane in PG(2, 9).

2. The Gale transform of H(2, 4) and its code

A classical unital H(2, q) in a projective plane PG(2, q) of square order q is the set of all absolute points of a non-
degenerate Hermitian form. It consists of q

√
q + 1 points such that each line meets H(2, q) at either 1 (tangent) or

√
q + 1 points (secant). The collineation group preserving H(2, q) in PGL(3, q) is the subgroup PGU(3, q), see [8] and also

[9, Theorem 2.50] or [6, Example A.9].
From now on we shall focus on the projective plane PG(2, 4) over the field GF(4) = {0, 1, ω, ω2

}, with ω2
+ ω + 1 = 0.

The projective plane PG(2, 4) contains exactly 280 unitals, 18 of which pass through the fundamental points (1, 0, 0),
(0, 1, 0) and (0, 0, 1). Each of these H(2, 4)’s admits one tangent and four secants through each of its points. Assume that
H = H(2, 4) has equation

ω(XY 2
+ XZ2

+ YZ2) + ω2(X2Y + X2Z + Y 2Z) = 0.

A quick computation [2] provides the point set of H , as in Table 5. Its Gale transform is the set H ′ – whose points constitute
a 9-cap in PG(5, 4), see Table 6 – admitting PGU(3, 4) as automorphism group.

Actually, the group G = PGU(3, 4) acting on H ′ has, among several others, the following orbits on points of PG(5, 4):

• the point set H ′ itself;
• two orbits, say R and T , of size 12;
• an orbit S of size 9.

It turns out that one of the orbits of size 12, say R, is a cap in PG(5, 4) that together with H ′ gives rise to a 21-cap V (see
Tables 6 and 7). The other orbit T of size 12, together with the other orbit S of size 9, gives rise to a plane, say π . It turns
out that G is reducible in its action on the points of PG(5, 4) (see Tables 8 and 9). Looking at the list of maximal subgroups of
PSL(6, q) as presented by Kleidman [10], we conclude that the stabilizer of the 21-capV is the symmetric square of PSL(3, 4),
see
[1, Proposition 4]; hence V is a Veronese surface with nucleus π , see [7, Chapter 25]. In Table 10 we have reported the
21 conics embedded in V .

The plane π admits a regular hyperoval C consisting of six points and preserved by the group A6 ∼= PSL(2, 9), see [12].
For instance, such a hyperoval in π is given by

C = {(1, 0, 0, 0, ω, ω2), (0, 1, ω, 0, 0, ω), (0, 0, 1, ω2, 1, ω2),

(1, ω, ω, ω2, ω2, ω2), (1, ω2, ω, ω, 1, 0), (1, 1, 0, 1, 0, 0)},

and the union V ∪ C is a non-complete 27-cap of PG(5, 4) whose stabilizer is the subgroup A6 of the group PGU(3, 4) of V .
We checked with MAGMA that no hyperplane of PG(5, 4) is disjoint from V ∪ C. Hence, V ∪ C gives rise to a cap code

which is a linear [27, 6, 16]4-code admitting C3 × A6 as its automorphism group, and the weight distribution of this code is

(0, 1), (16, 513), (18, 180), (20, 2160), (22, 864), (24, 270), (26, 108).
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