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a b s t r a c t

This paper proves a necessary and sufficient condition for the endomorphism monoid
End G[H] of a lexicographic product G[H] of graphs G,H to be the wreath product
End G o End H of the monoids End G and End H . The paper also gives respective necessary
and sufficient conditions for specialized cases such as for unretractive or triangle-free
graphs G.
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1. Introduction

Harary introduced the lexicographic product of graphs in [9]. Hisworkwas inspired by the success inmany combinatorial
applications of the wreath product of groups that was pioneered by Polya [31]. Harary based the definition of the
lexicographic product on earlier work of Frucht [6] and Zykov [35]. These authors had used special cases of the lexicographic
product, namely Kn[H] and K2[H], respectively. In these cases, the automorphism group of the product graph turned out to
be awreath product that involved the automorphismgroup of the graphH . Harary aimed at defining a product of two graphs,
namely the lexicographic product, whose automorphism group is equal to the wreath product of the automorphism groups
of its factors. As it turned out, this equation does not hold for certain graphs. A first related result was given by Sabidussi
in [32] and then generalized to a larger class of pairs of graphs by Hemminger in [13] and [14]. In [15], Hemminger also
extended that work so that it covered the lexicographic product of a graph with a family of graphs, also known as a join.
Studying wreath products, according to [17, p. 5], in special cases goes back to the 19th century to the work of Cauchy,

Jordan andNetto. In the 1930s, according to that source, Polya and Sperber (among others) came to considerwreath products
of permutation groups. According to Kilp et al. [23, p. 165], the earliest representative of that group of publications is Loewy’s
paper [29]. A brief discussion of wreath products of monoids is provided below. For more details, see [23,20].
Hell introduced the category of graphs in [11]. After that graph morphisms were studied, for example, in [8] and [12].

Notable contributions were also made by Knauer and various of his co-authors or colleagues in [24,28,25] (see also [19,
30,34]). Knauer et al. in particular introduced different kinds of graph morphisms and attempted to characterize graphs
by their endospectra, i.e., six-tuples of constraints of endomorphism sets ranging from automorphisms to endomorphisms
[1,26,27]. The results proved in this papermay be helpful for a better understanding of endomorphismmonoids of graphs or
the construction of graphs whose endomorphismmonoid has certain prescribed algebraic properties such as being a group
or von Neumann regular.
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2. Preliminaries

We denote the power set of a set S by P (S). For sets S and T we denote the set of mappings from S to T by F (S, T ).
The image of f ∈ F (S, T ) and its restriction to U ⊆ S are denoted im(f ) and f |U , respectively. The cardinality of S and the
identity mapping on S are denoted by |S| and 1S , respectively.

Lemma 1 ([33]). For any element s of a finite semigroup S there exists a positive integer n such that sn is idempotent, i.e., snsn = sn.

In this paper only finite, undirected, and simple graphs are considered. The vertex set and edge set of a graph G are
denoted by V (G) and E(G), respectively. The edge e ∈ E(G) incident with the vertices g and g ′ is denoted by gg ′. Many
standard concepts and notations will be used below, roughly as in [7, Ch. 1]. The set of neighbors of a vertex g is denoted
byN (g). A vertex g of graph G is called common neighbor of a set S of vertices of G if g ∈ ∩s∈S N (s). For each integer n, the
symbols Kn, Dn, Pn and Cn stand for the complete, the discrete graph, the path, and the cycle of order n, respectively. The K3 is
also called a triangle. The complement of G is denoted by G. For any subset S of V (G) the induced subgraph 〈S〉G has the vertex
set S and the edge set {hh′ | h, h′ ∈ S, hh′ ∈ E(G)}.
Let G and H be graphs. A graph morphism r : G→ H is an edge preserving vertex mapping. The set of graph morphisms

from G intoH is denoted byHom(G,H),Hom(G,G) is denoted by End G, and each element thereof is called an endomorphism.
Rather than 1V (G), we usually write 1G. A graph H is called a retract of a graph G if there are morphisms ι : H → G and
π : G→ H such that π ◦ ι = 1H . In this case π and ι are called a retraction and a co-retraction, respectively. The graph G is
also called a co-retract of H , and H is called a retract of G. A morphism which is a retraction and a co-retraction is called an
isomorphism.
The chromatic number χ(G) is known to be equal to min{n | Hom(G, Kn) 6= ∅}. A graph G is known to be bipartite if

and only if it contains no odd cycles (see, for example, [10, Theorem 2.4]). For a bipartite graph G, obviously χ(G) ∈ {1, 2}.
Corollary 8 of [22] states that χ(G[H]) ≥ χ(G) + 2χ(H) − 2, for a graph G with E(G) 6= ∅ and a graph H . Therefore, for
an odd cycle O and a bipartite graph B with E(B) 6= ∅ with χ(O) = 3 and χ(B) = 2, we have χ(O[H]) > 2χ(H) and
χ(B[H]) = 2χ(H). Obviously, χ(H) ≥ χ(G) if there exists a morphism φ : G → H . A morphism φ : G → H is called
locally strong if, for all φ(g)φ(g ′) ∈ E(H) and for all γ ∈ φ−1(φ(g)), there exists a γ ′ ∈ φ−1(φ(g ′)) such that γ γ ′ ∈ E(G).
A morphism φ : G→ H is called strong if, for any g, g ′ ∈ V (G) with φ(g)φ(g ′) ∈ E(H), then gg ′ ∈ E(G). Obviously, strong
morphisms are locally strong. These concepts were introduced by Böttcher and Knauer in [1].
An isomorphism φ : G→ G is called an automorphism and the automorphism group of G is denoted as Aut G. Obviously,

1G ∈ Aut G ⊆ End G. It is well known and easy to show that the automorphisms of a graph are exactly its bijective
endomorphisms. A graph G is called unretractive or a core graph if End G = Aut G. In [8] and in [18, Theorem II.1.5], it
has been shown that any two unretractive retracts of a given graph are isomorphic to each other. Each instance of this
isomorphism class of a graph G is denoted by CG and called the core of G. This term is used in [8] and goes back to Hell
and Nes̆etr̆il. Necessary and sufficient conditions for unretractive graphs are given in [20,21]. Because of Lemma 1, each
endomorphism φ ∈ End G has an idempotent power φn. Therefore a graph G is unretractive if and only if 1G is its only
idempotent endomorphism. A graph G is called rigid if End G = {1G}. Obviously, rigid graphs are unretractive.
It is also well known that the retracts of a graph G up to isomorphism are exactly the induced subgraphs 〈im(φ)〉G of

homomorphic images of idempotent endomorphisms of G; see, for example, [18, Remark II.1.2]. The following relations
were defined by Sabidussi for any graph G (see [32]): RG = {(g, g ′) ∈ V (G) × V (G) | NG(g) = NG(g ′)}, SG = RG. It was
shown by Sabidussi that (g, g ′) ∈ SG if and only ifNG(g)∪{g} = NG(g ′)∪{g ′}. A subset S ⊆ V (G) of the vertex set V (G) of a
graph G is called amulti-cone or externally related (the latter term is used by Imrich) ifNG(s) \ S = NG(s′) \ S, ∀s, s′ ∈ S. It is
easy to see that the classes of RG and SG are multi-cones and are independent or complete respectively. The identity relation
on a set S will be denoted by∆S (or∆ if there is no danger of confusion).
Let G be a graph andH = {Hg}g∈V (G) be a family of graphs. The graph L with V (L) = {(g, h) ∈ V (G) × ∪g∈V (G) V (Hg) |

h ∈ V (Hg)} and E(L) = {{(g, h), (g ′, h′)} | g = g ′ and hh′ ∈ E(Hg), or gg ′ ∈ E(G)} is called the lexicographic product
of G with the family H . It usually is called the join of G and H , and is denoted by G[H] or G[Hg | g ∈ V (G)]. If there
is a graph H such that Hg = H , for all g ∈ V (G), then G[H] is denoted by G[H]. Rather than ({g},∅)[H], we write
g[H]. The lexicographic product K2[H1,H2] is often denoted by H1 + H2 and called the sum of H1 and H2. Let G and M
be graphs and {Hg}g∈V (G), {Nm}m∈V (M) be families of graphs. Let L = G[Hg | g ∈ V (G)], Q = M[Nm | m ∈ V (M)]
and let φ : L → Q be a morphism. The spectral mapping Σ(φ) of φ is the mapping Σ(φ) : V (G) → P (V (M)),
g 7→ {m ∈ V (M) | ∃h ∈ V (Hg), n ∈ Nm with φ(g, h) = (m, n)}. The φ-spectrum of graph Hg is the setΣ(φ)(g). Following
Hemminger (see [15]), we call themorphism φ natural if |Σ(φ)(g)| = 1, for all g ∈ V (G). We call φ full ifm[Nm] ⊆ φ(g[Hg ])
or m[Nm] ∩ φ(g[Hg ]) = ∅, for all g ∈ V (G) and m ∈ V (M). The set of strong or full morphisms from L to Q is denoted by
Strong(L,Q ) or Full(L,Q ), respectively.
Let M be a monoid with the identity element 1M , S a set, and ms ∈ S for all m ∈ M , s ∈ S. Then S is called an M-act if

1Ms = s and (mm′)s = m(m′s), for all s ∈ S, m,m′ ∈ M . LetM,N be monoids and S, T be anM-act and N-act respectively.
It is well known thatW = M×F (S,N)with the multiplication (m, f )(n, g) := (mn, fng), with fng : S → N , s 7→ f (ns)g(s)
is a monoid. The identity element of this monoid is (1M , c1), where c1(s) = 1N , for all s ∈ S.W is called the wreath product
of M with N over S. It is denoted by (M o N | S) or, if there is no danger of confusion, by (M o N). Provided the respective
group inverse elements exist in M and N , the inverse of (m, f ) is (m, f )−1 = (m−1, g), with g(s) = f (m−1s)−1, for all
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