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a b s t r a c t

Given an undirected graph G = (V , E), and a designated vertex q ∈ V , the notion of a G-
parking function (with respect to q) was independently developed and studied by various
authors, and has recently gained renewed attention. This notion generalizes the classical
notion of a parking function associatedwith the complete graph. In this work, we study the
properties of maximum G-parking functions and provide a new bijection between them
and the set of spanning trees of G with no broken circuit. As a case study, we specialize
some of our results to the graph corresponding to the discrete n-cube Qn. We present the
article in an expository self-contained form, since we found the combinatorial aspects of
G-parking functions somewhat scattered in the literature, typically treated in conjunction
with sandpile models and closely related chip-firing games.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The classical parking functions provide a bijective correspondence between the spanning trees of the complete graph
Kn and certain integer-valued functions on the vertices of Kn. A notion of parking functions corresponding to the spanning
trees of an arbitrary graph G is more recent and has been independently developed in physics and combinatorics. It was
introduced by Bak, Tang and Wisenfeld [3] as a self-organized sandpile model on grids, and was generalized to arbitrary
graphs by Dhar [17]. See Definition 2.1 below for the precise definition of a G-parking function, associated with a connected
graph G.
This notion is already rather powerful; besides generalizing the classical parking function from Kn to an arbitrary graph, it

has been investigated in the context of chip-firing games [8,29,30] and the Tutte polynomial [9,14] in discrete mathematics,
and also investigated in algebra and related fields [2,15,16,20,31]. However, some of the combinatorial aspects of this topic
appear somewhat scattered in the literature.
Several fundamental results concerning the recurrent configurations of chip-firing can be derivedwithout the chip-firing

context and terminology. For this reason, we shy away from introducing and discussing the chip-firing terminology. Instead,
in this article we describe various interpretations of the G-parking functions in the most elementary combinatorial ways.
Using a natural partial order ≺ on the set P (G, q) of parking functions, we consider the maximal elements in this poset(
P (G, q),≺

)
. Much of our focus in this paper is on understanding the properties of such maximal parking functions. The

first result we describe (see Theorem 4.1) provides a new bijection between the maximal parking functions in the poset
and the set A(G; q) of acyclic orientations of G with a unique source at q. En route, we describe what we call an Extended
Dhar algorithm (since it is an extension of an algorithm due to Dhar [17] to recognize G-parking functions) in providing
an acyclic orientation corresponding to a maximal parking function. We review various combinatorial consequences and
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algebraic connections of this correspondence. For example, using known results (namely those of Greene and Zaslavsky [24]
and more recent work of Gebhard and Sagan [21]), we further identify a 1–1 correspondence between the set of maximal
parking functions and the set of spanning treeswithno ‘‘broken circuits,’’ or equivalently, the set of ‘‘safe’’ spanning trees ; see
Section 4 for the definitions of these terms. In this paper, we provide a much simpler bijection (compared to [21]) between
the set of safe trees and the set of acyclic orientations with a unique sink (or equivalently, a unique source). Furthermore we
generalize this bijection to one between all spanning trees and allG-parking functionswhich preserves the bijection between
safe trees and maximal G-parking functions. We must remark here that other bijective proofs between the set of G-parking
functions and the set of spanning trees of G (for arbitrary connected G) have been given by Chebikin and Pylyavskyy [13].
However, to our knowledge, the simpler bijection we report here, in Theorem 4.2 below, and its generalization given in
Theorem 4.6, are indeed new.
As an additional contribution, we describe a simple way to generate maximal parking functions in the Cartesian product

graph G1�G2, using maximal functions in the (factor) graphs G1 and G2. We then specialize our study to understanding the
parking functions in the discrete n-cube Qn on 2n vertices. By describing certain special constructions of maximal parking
functions f on Qn, we obtain a natural description of a set, dom(f ), of parking functions — those dominated, in the partial
order given by≺, by a special maximal parking function f . Interestingly enough we shall deduce (see Theorem 5.2) that

|dom(f )| =
n∏
k=2

k(
n
k ), (1.1)

while it is a well-known fact that

|P (Qn, q)| =
n∏
k=2

(2k)(
n
k ) = 22

n
−n−1

n∏
k=2

k(
n
k ). (1.2)

Recall that (1.2) corresponds to the total number of spanning trees of Qn (see Eq. 5.85 in [32]), using the matrix-tree
theorem and the explicit knowledge of the corresponding eigenvalues, to help evaluate the determinantal formula. In light
of the fact that finding a bijective proof accounting for the number of spanning trees of Qn has been open for several years,
we hope this is a nontrivial step towards such a proof.
The paper is organized as follows. In Section 2, we review some preliminaries, including Dhar’s burn criterion, which

determines whether a given function is a parking function. In Section 3, we show the bijection between maximum parking
functions and acyclic orientations with a unique source. In Section 4.1, we describe our new and simpler bijection between
the set of acyclic orientations with a unique sink and the set of safe trees. In Section 5.1, we describe a construction of
maximum parking functions on Cartesian products of graphs. In Section 5.2, we focus our study on the n-cube Qn, and
provide some explicit constructions ofmaximumparking functions and related bounds. In Section 6, for expository purposes
we review a bijection between diffuse states (introduced in the context of chip-firing) and acyclic orientations of a graph.
We conclude with some remarks on research in future directions and a few open problems in Section 7.

2. G-Parking functions and Dhar’s burn criteria

In this section we recall the definition of a G-parking function and review Dhar’s (burning) algorithm that can be used to
determine whether an integer-valued function on the vertices of G is a G-parking function.

Definition 2.1. For a connected graph G, a G-parking function relative to vertex q ∈ G is a function f : V (G)→ Z≥−1 such
that f (q) = −1 and for every non-empty A ⊆ V (G) \ {q}, there exists v ∈ A such that 0 ≤ f (v) < dA(v), where dA(v) is the
number of edges e = vw withw 6∈ A.

Remark 2.1. Herein, we have modified the standard definition of a G-parking function somewhat. The function f is now
defined on all of V (G) instead of restricted to simply V (G) \ {q} in order to improve the compatibility between G-parking
functions andCartesianproduct graphs such asQn; due to this change, for f to be aG-parking function, f (q) = −1necessarily.

Proposition 2.1. If for a function f : V (G) \ {q} → Z≥0, for every non-empty connected subgraph A ⊆ G \ {q}, there exists
v ∈ V (A) such that f (v) < dA(v), then f is a G-parking function.

Proof. Assume that, for all connected A ⊆ G \ {q}, that there exists v ∈ V (A) such that f (v) < dA(v). Proceeding by
contradiction, suppose that there is some disconnected B ⊆ G \ {q} such that f (v) ≥ dB(v) for every v ∈ V (B). Consider
then any connected component C of B. Since C is connectedwe have, by the hypothesis of the proposition, that f (v) < dC (v),
for some vertex v in C . Thus dB(v) < dC (v), implying that there is a vertex u in C \ B such that v and u are connected by an
edge in G; otherwise, either f (v) ≥ dC (v) or f (v) < dB(v). This contradicts the choice of C . �

Throughout we assume that the reference vertex q is fixed, and we always consider parking functions with respect to
this fixed vertex q, without necessarily bringing an explicit reference to it.
A natural question to ask is whether a given integer-valued function on the vertices of G can easily be tested for being a

G-parking function. In the context of the so-called sandpile models, Dhar [17] provided an algorithm, which can be
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