

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Closed trail decompositions of some classes of regular graphs

P. Paulraja*, S. Sampath Kumar

Department of Mathematics, Annamalai University, Annamalainagar - 608 002, India

ARTICLE INFO

Article history:
Received 1 July 2011
Received in revised form 13 December 2011
Accepted 16 December 2011
Available online 20 January 2012

Keywords: Closed trail decomposition Tensor product Wreath product Hamilton cycle Intersection graph

ABSTRACT

If H_1, H_2, \ldots, H_k are edge-disjoint subgraphs of G such that $E(G) = E(H_1) \cup E(H_2) \cup E(H_2) \cup E(H_1) \cup E(H_2) \cup E$ $\cdots \cup E(H_k)$, then we say that H_1, H_2, \ldots, H_k decompose G. If each $H_i \cong H$, then we say that H decomposes G and we denote it by H|G. If each H_i is a closed trail, then the decomposition is called a closed trail decomposition of G. In this paper, we consider the decomposition of a complete equipartite graph with multiplicity λ , that is, $(K_m \circ K_n)(\lambda)$, into closed trails of lengths pm_1, pm_2, \ldots, pm_k , where p is an odd prime number or $p=4,\sum_{i=1}^{k}pm_{i}$ is equal to the number of edges of the graph and \circ denotes the wreath product of graphs. A similar result is also proved for $(K_m \times K_n)(\lambda)$, where \times denotes the tensor product of graphs, if there exists a p-cycle decomposition of the graph. We obtain the following corollary: if $k \ge 3$ divides the number of edges of the even regular graph $(K_m \circ \overline{K}_n)(\lambda)$, then it has a \overline{K}_k -decomposition, where K_k denotes a closed trail of length k. For $m, n \geq 3$, this corollary subsumes the main results of the papers [A. Burgess, M. Šajna, Closed trail decompositions of complete equipartite graphs, J. Combin. Des. 17 (2009) 374-403]; [B.R. Smith, Decomposing complete equipartite graphs into closed trails of length k, Graphs Combin. 26 (2010) 133–140]. We have also partially obtained some results on T_k -decomposition of $(K_m \times K_n)(\lambda)$.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered here are simple and finite unless otherwise stated. Let C_k (resp. T_k) denote a cycle (resp. closed trail) of length k. Let P_k denote a path on k vertices. If H_1, H_2, \ldots, H_k are edge-disjoint subgraphs of G such that $E(G) = E(H_1) \cup E(H_2) \cup \cdots \cup E(H_k)$, then we say that H_1, H_2, \ldots, H_k decompose G. If each $H_i \cong H$, then we say that G decomposes G and we denote it by G and it is case we say that G has a G-decomposition or a G-cycle decomposition. The complete graph on G we vertices is denoted by G and its complement is denoted by G and G is a spanning subgraph G of G such that each component of G is a G-regular subgraph of G. In what follows, a G-factor is a G-factor in which each component is a G-factor of G is denoted by G-factors is called a G-factorization of G and we denote it by G-factors in denoted by G-factors is called a G-factorization of G and we denote it by G-factors is called a G-factorization of G and we denote it by G-factorization in the edge-disjoint subgraphs of G such that G-factorization is denoted by G-factorization is G-factorization of G-factorization of G-factorization is G-factorization in the edge-disjoint subgraphs of G-factorization is G-factorization in the edge-disjoint subgraphs of G-factori

For two graphs G and H their tensor product, denoted by $G \times H$, has vertex set $V(G) \times V(H)$ in which $(g_1, h_1)(g_2, h_2)$ is an edge whenever g_1g_2 is an edge in G and h_1h_2 is an edge in H. Similarly, the wreath product of the graphs G and G, denoted by $G \circ H$, has vertex set $V(G) \times V(H)$ in which $(g_1, h_1)(g_2, h_2)$ is an edge whenever g_1g_2 is an edge in G, or G and G and G and G are edge in G. In edge in G, or G and G are edge in G and G are edge in G and G are edge in G. Then G are edge in G and G are edge in G and G are edge in G and G are edge in G are edge in G. In edge in G and G are edge in G are edge in G are edge in G are edge in G and G are edge in G are edge in G are edge in G and G are edge in G are edge in G are edge in G and G are edge in G are edge in G are edge in G and G are edge in G are edge in G and G are edge in G and G are edge in G and G are edge in G are edge in G and G are edge in G are edge in G and G are edge in G are edge in G and G are edge in G and G are edge in G are edge in G and G are edge in G are edge in G are edge in G and G are edge in G and G are edge in G are edge in G and G are edge in G and G are edge in G are edge in G are edge in G and G are edge in G are edge in G are edge in G and G are edge in G and G are edge in G are edge in G and G are edge in G and G are edge in G and G are edge in G are edge in G and G are edge in G are edge in G and G are edge in G are edge in G and G are edge in G and G are edge in G are edge in G and G are edge in G and G are edge in G are edge in G and G are edge in G are edge in G are edge in G and G are edge in G are edge in G are edge in G are edge in G a

^{*} Corresponding author.

E-mail addresses: pprajaau@sify.com (P. Paulraja), ssamkumar.2008@gmail.com (S. Sampath Kumar).

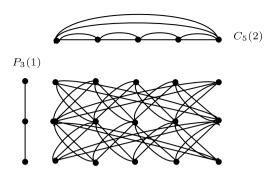


Fig. 1. The graph $P_3(1) \times C_5(2) \cong (P_3 \times C_5)(2)$.

where $x_{i,j}$ stands for the vertex (x_i, y_j) . Similarly, we denote the vertices of $V(G \circ H)$ also. It is well known that the tensor product is commutative and distributive over edge-disjoint union of graphs, that is, if $G = H_1 \oplus H_2 \oplus \cdots \oplus H_k$, then $G \times H = (H_1 \times H) \oplus (H_2 \times H) \oplus \cdots \oplus (H_k \times H)$. Clearly, $K_m \times K_n$ can be obtained from $K_m \circ K_n$ by deleting edges of N vertex disjoint copies of N. For an integer $N \geq N$, by the notation N, we mean N edge disjoint isomorphic copies of N (where the vertices of the copies of N may have intersection or not). A multigraph N is the graph obtained from N by replacing each edge of N by aparallel edges.

For two loopless multigraphs $G(\lambda)$ and $H(\mu)$, the tensor product, denoted by $G(\lambda) \times H(\mu)$, has the vertex set $V(G) \times V(H)$ and its edge set is described as follows: if $e = g_1 g_2$ is an edge of multiplicity λ in $G(\lambda)$ and $f = h_1 h_2$ is an edge of multiplicity μ in $H(\mu)$, then corresponding to these edges there are edges $(g_1, h_1)(g_2, h_2)$ and $(g_1, h_2)(g_2, h_1)$ each of multiplicity $\lambda \mu$ in $G(\lambda) \times H(\mu)$ and $G(\lambda) \times H(\mu)$ is isomorphic to $(G \times H)(\lambda \mu)$, see Fig. 1. Hence $G(\lambda) \times H \cong G \times H(\lambda) \cong (G \times H)(\lambda)$. Similarly, we have $G(\lambda) \circ K_n \cong (G \circ K_n)(\lambda)$.

For disjoint subsets A, $B \subset V(G)$, E(A, B) denotes the set of edges of G having one end in A and the other end in B. Let $K_{\ell(a),b}$ denote the complete $(\ell+1)$ -partite graph with ℓ partite sets of size a each and, one partite set of size b. Definitions which are not given here can be found in [3] or [12].

A connected even regular graph G is said to be Arbitrarily Decomposable into Closed Trails, or ADCT for short, if given any (multi) set $\{m_1, m_2, \ldots, m_k\}$ of positive integers greater than 2, with the property that G contains a closed trail of length m_i , $1 \le i \le m$, and also satisfying $\sum_{i=1}^k m_i = |E(G)|$, then the graph G has an edge-disjoint decomposition into closed trails of lengths m_1, m_2, \ldots, m_k .

Decomposition of a graph into closed trails is not new. In [4], Balister showed that K_n , n odd and, $K_n - F$, where F is a 1-factor of K_n , when n is even, are both ADCT. By ADDCT we mean Arbitrarily Decomposable into Directed Closed Trails. Further, in [5], Balister proved that K_n^* , the complete symmetric digraph on n vertices, is ADDCT. Billington and Cavenagh showed that the complete tripartite graph $K_3 \circ \overline{K}_n$ is ADCT; see [8]. In [6], decompositions of complete multipartite graphs into cycles or closed trails are dealt with in detail. Recently, Burgess and Šajna [14], and independently Smith [24], proved that for $m, k \geq 3$, $T_k \mid K_m \circ \overline{K}_n$ whenever k divides the number of edges of $K_m \circ \overline{K}_n$ and (m-1)n is even, where T_k is a closed trail of length k.

Here, we consider the problem of decomposing $(K_m \times K_n)(\lambda)$, $m \ge 3$, $n \ge 3$ and $(K_m \circ \overline{K}_n)(\lambda)$, $m \ge 3$, $n \ge 3$ into closed trails. We prove the following theorems.

Theorem 1.1. Let $m, n \ge 3$ and let $p \ge 3$ be a prime number or p = 4. If there exists a p-cycle decomposition of $(K_m \times K_n)$ (λ) , then it has a decomposition into closed trails of lengths pm_1, pm_2, \ldots, pm_k , where $m_i \ge 1$ and $\sum_{i=1}^k pm_i = \frac{\lambda mn(m-1)(n-1)}{2}$.

Corollary 1.1. Let $m, n, k \geq 3$ and for $k \neq 2^{\alpha}$, let $k = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$, be the prime factorization of k. Let k divide the number of edges of $(K_m \times K_n)(\lambda)$ and $\lambda(m-1)(n-1)$ is even. If there exists a p_i -cycle decomposition of $(K_m \times K_n)(\lambda)$, for some i, then $T_k \mid (K_m \times K_n)(\lambda)$, where T_k denotes a closed trail of length k. If $k = 2^{\alpha}$ and if $C_4 \mid (K_m \times K_n)(\lambda)$, then $T_k \mid (K_m \times K_n)(\lambda)$.

Corollary 1.2. If $m, n, k \ge 3$ so that (m-1)(n-1) is even and $k \mid \frac{mn(m-1)(n-1)}{2}$, then $K_m \times K_n$ has a decomposition into closed trails of length k.

Theorem 1.2. Let $m, n \geq 3$, and let $p \geq 3$ be a prime number or p = 4. If $(K_m \circ \overline{K}_n)(\lambda)$ is an even regular graph and if $p \mid \lambda\binom{m}{2}n^2$, then it has a decomposition into closed trails of lengths pm_1, pm_2, \ldots, pm_k , where $m_i \geq 1$ and $\sum_{i=1}^k pm_i = \lambda\binom{m}{2}n^2$.

Corollary 1.3. If $m, n, k \geq 3$ so that $\lambda(m-1)n$ is even and $k \mid \lambda\binom{m}{2}n^2$, then $(K_m \circ \overline{K}_n)(\lambda)$ has a decomposition into closed trails of length k.

The main results of [14,24] can be deduced as a corollary by substituting $\lambda = 1$ in Corollary 1.3.

Corollary 1.4 ([14,24]). If $m, n, k \ge 3$ so that (m-1)n is even and $k \mid {m \choose 2} n^2$, then $K_m \circ \overline{K}_n$ has a decomposition into closed trails of length k.

Download English Version:

https://daneshyari.com/en/article/4648451

Download Persian Version:

https://daneshyari.com/article/4648451

<u>Daneshyari.com</u>