
Discrete Mathematics 311 (2011) 2690–2702

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A multiset hook length formula and some applications
Paul-Olivier Dehaye a,∗, Guo-Niu Han b

a Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
b Institut de Recherche Mathématique Avancée, Université de Strasbourg et CNRS, 7 rue René-Descartes, 67084 Strasbourg, France

a r t i c l e i n f o

Article history:
Received 4 May 2011
Received in revised form 17 August 2011
Accepted 18 August 2011
Available online 9 September 2011

Keywords:
Integer partitions
Hook length
q-series
Congruence relations
t-cores

a b s t r a c t

Amultiset hook length formula for integer partitions is established by using combinatorial
manipulation. As special cases, we rederive three hook length formulas, two of them
obtained by Nekrasov–Okounkov, the third one by Iqbal, Nazir, Raza and Saleem, who have
made use of the cyclic symmetry of the topological vertex. Amultiset hook-content formula
is also proved.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Recently, an elementary proof of the Nekrasov–Okounkov hook length formula [18] was given by the second author
in [8], using the Macdonald identities for At (see [15]). A crucial step of that proof is the construction of a bijection between
t-cores and integer vectors satisfying some additional properties. Several further papers related to the Nekrasov–Okounkov
formula have been published. See, e.g., [24,3,5,4,10,23,20,11].

In the present paper, we again take up the study of the Nekrasov–Okounkov formula and obtain several results in the
following directions. (1) The bijection between t-cores and integer vectors is constructed for any positive integer t , while
in [8], t had to be an odd positive integer. (2) That bijection is shown to satisfy a multiset hook length formula (Theorem 1)
with a functional parameter τ by using a geometric model, called ‘‘exploded tableau’’. The result in [8] corresponds to the
special case τ(x) = x. (3) A multiset hook length formula provides another special case when taking τ = sin, namely
Theorem 2. (4) Three hook length formulas are derived (Corollaries 7 and 8, Theorem 5), the first two previously
obtained by Nekrasov–Okounkov [18], the third one by Iqbal et al. [11]. (5) Theorem 2 provides a unified formula for the
Nekrasov–Okounkov formula and the classical Jacobi triple product identity [2, p. 21], [12, p. 20]. This formula solves Problem
6.4 in [7]. (6) A multiset hook-content hook length formula is also given in Section 6.

The basic notions needed here can be found in [16, p. 1], [22, p. 287], [13, p. 1], [12, p. 59], and [2, p. 1]. A partition λ
of size n and of length ℓ is a sequence of positive integers λ = (λ1, . . . , λℓ) such that λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0 and
n = λ1 + λ2 + · · · + λℓ. We write n = |λ|, ℓ(λ) = ℓ and λi = 0 for i ≥ ℓ + 1. The set of all partitions of size n is denoted
by P (n). The set of all partitions is denoted by P , so that P =


n≥0 P (n). The hook length multiset of λ, denoted by H(λ),

is the multiset of all hook lengths of λ. Let t be a positive integer. We write Ht(λ) = {h | h ∈ H(λ), h ≡ 0(mod t)}. A
partition λ is a t-core if Ht(λ) = ∅ (see [12, p.69, p.612], [22, p. 468]). For example, λ = (6, 3, 3, 2) is a partition of size 14
and of length 4. We have H(λ) = {2, 1, 4, 3, 1, 5, 4, 2, 9, 8, 6, 3, 2, 1} and H2(λ) = {2, 4, 4, 2, 8, 6, 2} (see also [8]).
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Table 1
The example λ = (8, 4, 3, 2, 2, 1) with t = 5. Note that this also gives W1(λ), V1(λ), etc.
sinceW (λ) = W1(λ), etc.

λ (8, 4, 3, 2, 2, 1)
W (λ) {10, 5, 3, 1, 0,−2,−4,−5,−6,−7,−8,−9,−10,−11, . . .}
V (λ) {10, 3, 1,−6,−8}
WĎ(λ) {5, 0,−2,−4,−5,−7,−9,−10,−11, . . .}
M(λ) 10
m(λ) −4
C(λ) {9, 8, 7, 6, 4, 2,−1,−3}

λ∗ (6, 5, 3, 2, 1, 1, 1, 1)
W2(λ) {8, 6, 3, 1,−1,−2,−3,−4,−6,−7,−8,−9,−10,−11,−12, . . .}
V2(λ) {8, 6,−1,−3,−10}
WĎ

2 (λ) {3, 1,−2,−4,−6,−7,−8,−9,−11,−12, . . .}
M2(λ) 8
m2(λ) −6
C2(λ) {7, 5, 4, 2, 0,−5}

Let t be a positive integer and t0 = 0 (resp. t0 = 1/2) if t is odd (resp. even). Consider the set of (half-)integers Z′
=

t0 + Z. Each vector of (half-)integers V⃗ = (v0, v1, . . . , vt−1) ∈ Z′t is called a Vt-coding if the following conditions hold:
(i) {vi − i mod t : i = 0, . . . , t −1} is equal to t0 +{0, 1, . . . , t −1}, (ii) v0 +v1 +· · ·+vt−1 = 0, (iii) v0 > v1 > · · · > vt−1.

Theorem 1. Let t be a positive integer and τ : Z → F be any weight function from Z to a field F . Then, there is a bijection
φt : λ → V⃗ = (v0, v1, . . . , vt−1) from t-cores onto Vt-codings such that

|λ| =
1
2t
(v20 + v21 + · · · + v2t−1)−

t2 − 1
24

(1)

and ∏
h∈H(λ)

τ(h − t)τ (h + t)
τ (h)2

=

t−1∏
i=1

τ(−i)βi(λ)

τ(i)βi(λ)+t−i

∏
0≤i<j≤t−1

τ(vi − vj), (2)

where βi(λ) = #{� ∈ λ : h(�) = t − i}.

The proof of Theorem 1 is given in Section 3.With the weight function τ = sin, an odd function, we get the specialization
stated in the next theorem. Its proof is given in Section 5.

Theorem 2. For any positive integer r and any complex numbers z, t, we have−
λ

q|λ|
∏

h∈Hr (λ)


1 −

sin2(tz)
sin2(hz)


= exp

∞−
k=1


qk

k(1 − qk)
−

rqrk

k(1 − qrk)
sin2(tkz)
sin2(rkz)


. (3)

Some specializations of Eq. (3) are given in Section 4.

2. Exploded tableau

With each partition λ = (λ1, λ2, . . . , λℓ) and each positive integer t we associate several sets of (half-)integers. All these
concepts will be illustrated for the case λ = (8, 4, 3, 2, 2, 1) and t = 5 (see Table 1). Note that this case is special, as λ itself
is a t-core, but this property will be assumed most of the time.

The W -set of λ is a translation of the shifted parts, defined to be the set of all integers of the form λi − i + (t + 1)/2
for i ∈ N \ 0 (the partition λ is viewed as an infinite non-increasing sequence trailing with zeros). We denote this set by
W (λ). It is immediate that W (λ) ⊂ Z′. It is also clear that there exists a smallest (half-)integral M = M(λ) and a largest
(half-)integralm = m(λ) such that {m,m − 1, . . .} ⊆ W (λ) ⊆ {M,M − 1, . . .}.

We say that an element x in a set X is t-maximal if it is the largest in its congruence class modulo t . If t is even, we have
W (λ) ⊂

Z
2 . By ‘‘congruence classes mod t ’’, we then mean the congruence classes mod t of 1/2, 3/2, . . . , t − 1/2. The set

of t-maximal elements is denoted by t-max(X). In the cases further considered, congruence classes will always contain an
element, so no maximum will ever be taken over an empty set. It is then clear that |t-max(X)| = t .

We define the V -set V (λ) of λ by V (λ) := t-max(W (λ)). It is easily seen from the definition ofm(λ) that no congruence
class modulo t can be empty. We also set W Ď(λ) = W (λ) \ V (λ). If V (λ) is sorted by decreasing order, we get a Vt-coding
(as proved in Eq. (8)), that will be denoted by V⃗ (λ) = φt(λ). Thus, the bijection φt required in Theorem 1 is constructed.

We also define the complementary set C(λ) := {M,M − 1, . . .} \ W (λ), so that the disjoint unionW Ď(λ)∪ V (λ)∪ C(λ)
is equal to {M,M − 1, . . .}. Note thatm(λ) = min C(λ)− 1.

The invariants previously defined, such as V (λ),W (λ), . . . will also be given the subscript ‘‘1’’, as in V1(λ),W1(λ), . . ..
The invariants attached to the conjugate partition λ∗, such as V (λ∗),W (λ∗), . . .will then be written V2(λ),W2(λ), . . ..
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