A multiset hook length formula and some applications

Paul-Olivier Dehaye ${ }^{\text {a,* }}$, Guo-Niu Han ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
${ }^{\text {b }}$ Institut de Recherche Mathématique Avancée, Université de Strasbourg et CNRS, 7 rue René-Descartes, 67084 Strasbourg, France

ARTICLE INFO

Article history:

Received 4 May 2011
Received in revised form 17 August 2011
Accepted 18 August 2011
Available online 9 September 2011

Keywords:

Integer partitions
Hook length
q-series
Congruence relations
t-cores

Abstract

A multiset hook length formula for integer partitions is established by using combinatorial manipulation. As special cases, we rederive three hook length formulas, two of them obtained by Nekrasov-Okounkov, the third one by Iqbal, Nazir, Raza and Saleem, who have made use of the cyclic symmetry of the topological vertex. A multiset hook-content formula is also proved.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Recently, an elementary proof of the Nekrasov-Okounkov hook length formula [18] was given by the second author in [8], using the Macdonald identities for A_{t} (see [15]). A crucial step of that proof is the construction of a bijection between t-cores and integer vectors satisfying some additional properties. Several further papers related to the Nekrasov-Okounkov formula have been published. See, e.g., [24,3,5,4,10,23,20,11].

In the present paper, we again take up the study of the Nekrasov-Okounkov formula and obtain several results in the following directions. (1) The bijection between t-cores and integer vectors is constructed for any positive integer t, while in [8], t had to be an odd positive integer. (2) That bijection is shown to satisfy a multiset hook length formula (Theorem 1) with a functional parameter τ by using a geometric model, called "exploded tableau". The result in [8] corresponds to the special case $\tau(x)=x$. (3) A multiset hook length formula provides another special case when taking $\tau=$ sin, namely Theorem 2. (4) Three hook length formulas are derived (Corollaries 7 and 8, Theorem 5), the first two previously obtained by Nekrasov-Okounkov [18], the third one by Iqbal et al. [11]. (5) Theorem 2 provides a unified formula for the Nekrasov-Okounkov formula and the classical Jacobi triple product identity [2, p. 21], [12, p. 20]. This formula solves Problem 6.4 in [7]. (6) A multiset hook-content hook length formula is also given in Section 6.

The basic notions needed here can be found in [16, p. 1], [22, p. 287], [13, p. 1], [12, p. 59], and [2, p. 1]. A partition λ of size n and of length ℓ is a sequence of positive integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$ and $n=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\ell}$. We write $n=|\lambda|, \ell(\lambda)=\ell$ and $\lambda_{i}=0$ for $i \geq \ell+1$. The set of all partitions of size n is denoted by $\mathcal{P}(n)$. The set of all partitions is denoted by \mathcal{P}, so that $\mathcal{P}=\bigcup_{n \geq 0} \mathcal{P}(n)$. The hook length multiset of λ, denoted by $\mathscr{H}(\lambda)$, is the multiset of all hook lengths of λ. Let t be a positive integer. We write $\mathscr{H}_{t}(\lambda)=\{h \mid h \in \mathscr{H}(\lambda), h \equiv 0(\bmod t)\}$. A partition λ is a t-core if $\mathscr{H}_{t}(\lambda)=\emptyset$ (see [12, p.69, p.612], [22, p. 468]). For example, $\lambda=(6,3,3,2)$ is a partition of size 14 and of length 4 . We have $\mathscr{H}(\lambda)=\{2,1,4,3,1,5,4,2,9,8,6,3,2,1\}$ and $\mathscr{H}_{2}(\lambda)=\{2,4,4,2,8,6,2\}$ (see also [8]).

[^0]Table 1
The example $\lambda=(8,4,3,2,2,1)$ with $t=5$. Note that this also gives $W_{1}(\lambda), V_{1}(\lambda)$, etc. since $W(\lambda)=W_{1}(\lambda)$, etc.

λ	$(8,4,3,2,2,1)$
$W(\lambda)$	$\{10,5,3,1,0,-2,-4,-5,-6,-7,-8,-9,-10,-11, \ldots\}$
$V(\lambda)$	$\{10,3,1,-6,-8\}$
$W^{\dagger}(\lambda)$	$\{5,0,-2,-4,-5,-7,-9,-10,-11, \ldots\}$
$M(\lambda)$	10
$m(\lambda)$	-4
$C(\lambda)$	$\{9,8,7,6,4,2,-1,-3\}$
λ^{*}	$(6,5,3,2,1,1,1,1)$
$W_{2}(\lambda)$	$\{8,6,3,1,-1,-2,-3,-4,-6,-7,-8,-9,-10,-11,-12, \ldots\}$
$V_{2}(\lambda)$	$\{8,6,-1,-3,-10\}$
$W_{2}^{\dagger}(\lambda)$	$\{3,1,-2,-4,-6,-7,-8,-9,-11,-12, \ldots\}$
$M_{2}(\lambda)$	8
$m_{2}(\lambda)$	-6
$C_{2}(\lambda)$	$\{7,5,4,2,0,-5\}$

Let t be a positive integer and $t_{0}=0$ (resp. $t_{0}=1 / 2$) if t is odd (resp. even). Consider the set of (half-)integers $\mathbb{Z}^{\prime}=$ $t_{0}+\mathbb{Z}$. Each vector of (half-)integers $\vec{V}=\left(v_{0}, v_{1}, \ldots, v_{t-1}\right) \in \mathbb{Z}^{\prime t}$ is called a V_{t}-coding if the following conditions hold: (i) $\left\{v_{i}-i \bmod t: i=0, \ldots, t-1\right\}$ is equal to $t_{0}+\{0,1, \ldots, t-1\}$, (ii) $v_{0}+v_{1}+\cdots+v_{t-1}=0$, (iii) $v_{0}>v_{1}>\cdots>v_{t-1}$.

Theorem 1. Let t be a positive integer and $\tau: \mathbb{Z} \rightarrow F$ be any weight function from \mathbb{Z} to a field F. Then, there is a bijection $\phi_{t}: \lambda \mapsto \vec{V}=\left(v_{0}, v_{1}, \ldots, v_{t-1}\right)$ from t-cores onto V_{t}-codings such that

$$
\begin{equation*}
|\lambda|=\frac{1}{2 t}\left(v_{0}^{2}+v_{1}^{2}+\cdots+v_{t-1}^{2}\right)-\frac{t^{2}-1}{24} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{h \in \mathscr{H}(\lambda)} \frac{\tau(h-t) \tau(h+t)}{\tau(h)^{2}}=\prod_{i=1}^{t-1} \frac{\tau(-i)^{\beta_{i}(\lambda)}}{\tau(i)^{\beta_{i}(\lambda)+t-i}} \prod_{0 \leq i<j \leq t-1} \tau\left(v_{i}-v_{j}\right) \tag{2}
\end{equation*}
$$

where $\beta_{i}(\lambda)=\#\{\square \in \lambda: h(\square)=t-i\}$.
The proof of Theorem 1 is given in Section 3. With the weight function $\tau=\sin$, an odd function, we get the specialization stated in the next theorem. Its proof is given in Section 5.

Theorem 2. For any positive integer r and any complex numbers z, t, we have

$$
\begin{equation*}
\sum_{\lambda} q^{|\lambda|} \prod_{h \in \mathcal{H}_{r}(\lambda)}\left(1-\frac{\sin ^{2}(t z)}{\sin ^{2}(h z)}\right)=\exp \sum_{k=1}^{\infty}\left(\frac{q^{k}}{k\left(1-q^{k}\right)}-\frac{r q^{r k}}{k\left(1-q^{r k}\right)} \frac{\sin ^{2}(t k z)}{\sin ^{2}(r k z)}\right) \tag{3}
\end{equation*}
$$

Some specializations of Eq. (3) are given in Section 4.

2. Exploded tableau

With each partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ and each positive integer t we associate several sets of (half-) integers. All these concepts will be illustrated for the case $\lambda=(8,4,3,2,2,1)$ and $t=5$ (see Table 1). Note that this case is special, as λ itself is a t-core, but this property will be assumed most of the time.

The W-set of λ is a translation of the shifted parts, defined to be the set of all integers of the form $\lambda_{i}-i+(t+1) / 2$ for $i \in \mathbb{N} \backslash 0$ (the partition λ is viewed as an infinite non-increasing sequence trailing with zeros). We denote this set by $W(\lambda)$. It is immediate that $W(\lambda) \subset \mathbb{Z}^{\prime}$. It is also clear that there exists a smallest (half-)integral $M=M(\lambda)$ and a largest (half-)integral $m=m(\lambda)$ such that $\{m, m-1, \ldots\} \subseteq W(\lambda) \subseteq\{M, M-1, \ldots\}$.

We say that an element x in a set X is t-maximal if is the largest in its congruence class modulo t. If t is even, we have $W(\lambda) \subset \frac{\mathbb{Z}}{2}$. By "congruence classes mod t ", we then mean the congruence classes $\bmod t$ of $1 / 2,3 / 2, \ldots, t-1 / 2$. The set of t-maximal elements is denoted by t - $\max (X)$. In the cases further considered, congruence classes will always contain an element, so no maximum will ever be taken over an empty set. It is then clear that $|t-\max (X)|=t$.

We define the V-set $V(\lambda)$ of λ by $V(\lambda):=t-\max (W(\lambda))$. It is easily seen from the definition of $m(\lambda)$ that no congruence class modulo t can be empty. We also set $W^{\dagger}(\lambda)=W(\lambda) \backslash V(\lambda)$. If $V(\lambda)$ is sorted by decreasing order, we get a V_{t}-coding (as proved in Eq. (8)), that will be denoted by $\vec{V}(\lambda)=\phi_{t}(\lambda)$. Thus, the bijection ϕ_{t} required in Theorem 1 is constructed.

We also define the complementary set $C(\lambda):=\{M, M-1, \ldots\} \backslash W(\lambda)$, so that the disjoint union $W^{\dagger}(\lambda) \cup V(\lambda) \cup C(\lambda)$ is equal to $\{M, M-1, \ldots\}$. Note that $m(\lambda)=\min C(\lambda)-1$.

The invariants previously defined, such as $V(\lambda), W(\lambda), \ldots$ will also be given the subscript " 1 ", as in $V_{1}(\lambda), W_{1}(\lambda), \ldots$. The invariants attached to the conjugate partition λ^{*}, such as $V\left(\lambda^{*}\right), W\left(\lambda^{*}\right), \ldots$ will then be written $V_{2}(\lambda), W_{2}(\lambda), \ldots$

https://daneshyari.com/en/article/4648482

Download Persian Version:
https://daneshyari.com/article/4648482

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: pdehaye@math.ethz.ch (P.-O. Dehaye), guoniu.han@unistra.fr (G.-N. Han).

