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1. Introduction

Recently, an elementary proof of the Nekrasov-Okounkov hook length formula [18] was given by the second author
in [8], using the Macdonald identities for A; (see [15]). A crucial step of that proof is the construction of a bijection between
t-cores and integer vectors satisfying some additional properties. Several further papers related to the Nekrasov-Okounkov
formula have been published. See, e.g., [24,3,5,4,10,23,20,11].

In the present paper, we again take up the study of the Nekrasov-Okounkov formula and obtain several results in the
following directions. (1) The bijection between t-cores and integer vectors is constructed for any positive integer t, while
in [8], t had to be an odd positive integer. (2) That bijection is shown to satisfy a multiset hook length formula (Theorem 1)
with a functional parameter t by using a geometric model, called “exploded tableau”. The result in [8] corresponds to the
special case 7(x) = x. (3) A multiset hook length formula provides another special case when taking T = sin, namely
Theorem 2. (4) Three hook length formulas are derived (Corollaries 7 and 8, Theorem 5), the first two previously
obtained by Nekrasov-Okounkov [18], the third one by Igbal et al. [11]. (5) Theorem 2 provides a unified formula for the
Nekrasov-Okounkov formula and the classical Jacobi triple product identity [2, p. 21],[12, p. 20]. This formula solves Problem
6.4 in [7]. (6) A multiset hook-content hook length formula is also given in Section 6.

The basic notions needed here can be found in [16, p. 1], [22, p. 287], [13, p. 1], [12, p. 59], and [2, p. 1]. A partition A
of size n and of length ¢ is a sequence of positive integers A = (A1,...,Ag) suchthat Ay > A, > --- > A, > 0and
n=2A1+XAy+ -4+ A, Wewriten = |A|,€(X) = £and A; = 0 fori > £ + 1. The set of all partitions of size n is denoted
by & (n). The set of all partitions is denoted by &, so that »» = | J,.., & (n). The hook length multiset of X, denoted by #¢ (1),
is the multiset of all hook lengths of A. Let t be a positive integer. We write #;(A) = {h | h € #(A),h = 0(mod t)}. A
partition X is a t-core if #¢; (1) = @ (see [12, p.69, p.612], [22, p. 468]). For example, A = (6, 3, 3, 2) is a partition of size 14
and of length 4. We have #(A) = {2,1,4,3,1,5,4,2,9,8,6,3,2, 1} and #, (1) = {2, 4, 4, 2, 8, 6, 2} (see also [8]).
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Table 1
The example . = (8,4, 3, 2,2, 1) with t = 5. Note that this also gives W; (1), V1 (1), etc.
since W (L) = W;(A), etc.

A (8,4,3,2,2,1)

W) {10,5,3,1,0, -2, —4, —5, —6, —7, —8, —9, —10, —11, ..}
V(n) {10,3,1, —6, —8}

wt) (5,0, =2, —4, -5, -7, -9, —10, —11, ...}

M) 10

m(}) —4

c(h) {9,8,7,6,4,2, -1, =3}

A 6,5,3,2,1,1,1,1)

W, (1) (8,6,3,1,—-1,-2, -3, -4, -6, -7, -8, -9, —10, —11, —12, .. .}
Va (1) {8,6,—1,—3, —10}

wi () (3,1,-2,—4,-6,-7,-8,-9,—-11,-12,...}

My (M) 8

my (L) —6

G\ {(7,5,4,2,0, =5}

Let t be a positive integer and ty; = 0 (resp. to = 1/2) if t is odd (resp. even). Consider the set of (half-)integers Z' =

to + Z. Each vector of (half-)integers V. = (vg, v1, ..., v;—1) € Z" is called a V;-coding if the following conditions hold:
(i){vi—imodt:i=0,...,t—1}isequaltotg+{0,1,...,t—1},(ii)vo+vi+---4+v,1 =0,(ii)vg > v1 > -+ > vy_1.
Theorem 1. Let t be a positive integer and T : Z — F be any weight function from Z to a field F. Then, there is a bijection
¢t : A=V = (vg, v1, ..., v_1) from t-cores onto V;-codings such that
1, . t?—1
|A|=Z(UO+U1+"'+U[,1)_7 (1)
and
tth—tth+t) = r(=i)i®
> :l_[ B 1_[ r(vi—vj), (2)
hedt(n) t(h) i1 TG 0<i<j<t—1

where B;(A) = #{O e A : h(O) =t —i}.

The proof of Theorem 1 is given in Section 3. With the weight function T = sin, an odd function, we get the specialization
stated in the next theorem. Its proof is given in Section 5.

Theorem 2. For any positive integer r and any complex numbers z, t, we have

N B sinz(tz)>_ °°< q* B rq’® sinz(tkz)>
;q L1 (l st ) =P L k= - s ) ©

he#r (L) k=1

Some specializations of Eq. (3) are given in Section 4.
2. Exploded tableau

With each partition . = (A1, Ao, ..., A¢) and each positive integer t we associate several sets of (half-)integers. All these
concepts will be illustrated for the case A = (8, 4, 3, 2,2, 1) and t = 5 (see Table 1). Note that this case is special, as A itself
is a t-core, but this property will be assumed most of the time.

The W-set of A is a translation of the shifted parts, defined to be the set of all integers of the form A; — i + (t + 1)/2
fori € N\ 0 (the partition A is viewed as an infinite non-increasing sequence trailing with zeros). We denote this set by
W (A). It is immediate that W (L) C Z'. It is also clear that there exists a smallest (half-)integral M = M()) and a largest
(half-)integral m = m(A) suchthat{m,m—1,...} CWQR) < {M,M —1,...}.

We say that an element x in a set X is t-maximal if it is the largest in its congruence class modulo t. If t is even, we have
W) C %. By “congruence classes mod t”, we then mean the congruence classes mod t of 1/2,3/2,...,t — 1/2. The set
of t-maximal elements is denoted by t- max(X). In the cases further considered, congruence classes will always contain an
element, so no maximum will ever be taken over an empty set. It is then clear that |t- max(X)| = t.

We define the V-set V(1) of A by V() := t-max(W ())). It is easily seen from the definition of m(A) that no congruence
class modulo t can be empty. We also set W*(}) = W(@Q) \ V(A).IfV(Q) is sorted by decreasing order, we get a V;-coding
(as proved in Eq. (8)), that will be denoted by V(1) = ¢:()). Thus, the bijection ¢, required in Theorem 1 is constructed.

We also define the complementary set C(A) := {M, M — 1, ...} \ W(}), so that the disjoint union W (L) U V(L) UC(L)
isequalto {M,M — 1, ...}. Note that m(A) = minC(}) — 1.

The invariants previously defined, such as V(A), W (1), ... will also be given the subscript “1”, as in V1 (1), Wi (A), .. ..
The invariants attached to the conjugate partition A*, such as V(1*), W(A*), ... will then be written V, (1), W, (1), .. ..
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