Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

2-factors and independent sets on claw-free graphs

Roman Kužel^a, Kenta Ozeki^b, Kiyoshi Yoshimoto^{c,*}

^a Department of Mathematics, University of West Bohemia, Pilsen, Czech Republic

^b National Institute of Informatics, Tokyo 101-8430, Japan

^c Department of Mathematics, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan

ARTICLE INFO

Article history: Received 20 October 2010 Received in revised form 17 August 2011 Accepted 18 August 2011 Available online 26 October 2011

Keywords: Claw-free graph Line graph 2-factor Maximum independent set Ryjacek closure

1. Introduction

In this paper, we consider finite graphs. If no ambiguity can arise, we denote simply the order |G| of G by n, the minimum degree $\delta(G)$ by δ and the independence number $\alpha(G)$ by α . All notation and terminology not explained in this paper is given in [1,4].

A 2-*factor* of a graph *G* is a spanning 2-regular subgraph of *G*. Choudum and Paulraj [3] and Egawa and Ota [5] independently showed that every claw-free graph with $\delta \ge 4$ has a 2-factor. For the upper bound of the number of cycles in 2-factors, Broersma et al. [2] proved that a claw-free graph with $\delta \ge 4$ has a 2-factor with at most max $\{\frac{n-3}{\delta-1}, 1\}$ cycles. This upper bound is almost best possible. (See [12].) Faudree et al. [6] studied a pair of a maximum independent set and a 2-factor of a claw-free graph *G* which together dominate *G* and showed that if *G* is a claw-free graph with $\delta \ge \frac{2n}{\alpha} - 2$ and

 $n \ge \frac{3\alpha^3}{2}$, then for any maximum independent set *S*, *G* has a 2-factor with α cycles such that each cycle contains exactly one vertex in *S*. The following problems were posed in their article.

Conjecture A ([6]). Let G be a claw-free graph.

- 1. If $\delta \geq \frac{n}{\alpha} \geq 5$, then there exist a maximum independent set *S* and a 2-factor with α cycles such that each cycle contains exactly one vertex of *S*.
- 2. If $\delta \ge \alpha + 1$, then for any maximum independent set *S*, there exists a 2-factor with α cycles such that each cycle contains exactly one vertex in *S*.

In this paper, we study 2-factors that just divide a given maximum independent set *S*, i.e., we require that every cycle contains at least one vertex of *S*, and so the number of cycles in a 2-factor can be smaller than α . The original question was

* Corresponding author.

ABSTRACT

In this paper, we show that if *G* is an *l*-connected claw-free graph with minimum degree at least three and $l \in \{2, 3\}$, then for any maximum independent set *S*, there exists a 2-factor in which each cycle contains at least l - 1 vertices in *S*.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

E-mail addresses: rkuzel@kma.zcu.cz (R. Kužel), ozeki@nii.ac.jp (K. Ozeki), yosimoto@math.cst.nihon-u.ac.jp (K. Yoshimoto).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2011.08.020

posed by Kaiser when the third author gave a lecture at the University of West Bohemia. However, in general still we need the condition $\delta \ge n/\alpha$ because for any positive integer δ with $\frac{n}{\alpha} - \frac{1}{2\delta} < \delta < \frac{n}{\alpha}$, there exists an infinite family of line graphs with minimum degree δ every 2-factor of which contains more than α cycles (see [6,12]). However 2-connectivity decreases the lower bound of minimum degrees. Our main result of this paper is the following.

Theorem 1. If *G* is an *l*-connected claw-free graph with $\delta \ge 3$ and $l \in \{2, 3\}$, then for any maximum independent set *S*, *G* has a 2-factor such that each cycle contains at least l - 1 vertices in *S*.

We will show this in Section 2. Since a 3-connected claw-free graph has a 2-factor in which each cycle contains at least two vertices in a given maximum independent set by Theorem 1, the number of the cycles in the 2-factor is at most $\frac{\alpha}{2}$. It is well known that the independence number of a claw-free graph is at most $\frac{2n}{\delta+2}$ (for instance, see [6]), and so we obtain the following.

Corollary 2. A 3-connected claw-free graph has a 2-factor with at most $\frac{\alpha}{2} \leq \frac{n}{\delta+2}$ cycles.

This improves the upper bound $\frac{n-3}{\delta-1}$ given by Broersma et al. in [2] if the connectivity is at least three and also the upper bound $\frac{2n}{15}$ given by Jackson and Yoshimoto in [9] if $\delta \ge 14$.

Finally we give some additional definitions and notation. A subgraph *D* is *dominating* a graph *G* if G - V(D) is edgeless. The degree of a vertex *u* in *G* is denoted by $d_G(u)$ and we denote the set of all the vertices of degree at least *k* in *G* by $V_{\geq k}(G)$, and $V_k(G) = \{d_G(u) = k \mid u \in G\}$. The *edge-degree* of an edge *xy* is defined as $d_G(x) + d_G(y) - 2$. An edge subset E_0 is called *independent* if no pair of edges in E_0 are adjacent. We denote the subgraph induced by the vertex set of a subgraph *B* in *G* by G[B]. A graph *G* with at least k + 1 edges is *essentially k*-edge-connected if for any edge set E_0 of at most k - 1 edges, $G \setminus E_0$ contains at most one component with edges.

2. Proof of Theorem 1

Let G_0 be an *l*-connected claw-free graph with $\delta \ge 3$ and $l \in \{2, 3\}$ and S_0 be any maximum independent set of G_0 . We look for a 2-factor in G_0 in which each cycle contains at least l - 1 vertices in S_0 .

We use Ryjáček closure of a claw-free graph *G* which is defined as follows: for each vertex *x* of *G*, $N_G(x)$ induces a subgraph $G[N_G(x)]$ with at most two components; otherwise there is an induced claw. If $G[N_G(x)]$ has two components, both of them must be cliques. In the case that $G[N_G(x)]$ is connected, we add edges joining all pairs of nonadjacent vertices in $N_G(x)$. The *closure cl*(*G*) of *G* is a graph obtained by recursively repeating this operation, as long as this is possible. Ryjáček [10] showed that the closure *cl*(*G*) is uniquely determined and *G* is Hamiltonian if and only if *cl*(*G*) is Hamiltonian.

Ryjáček et al. [11, Theorem 4] proved that for any mutually vertex-disjoint cycles D_1, \ldots, D_p in cl(G), a claw-free graph G has mutually vertex-disjoint cycles C_1, \ldots, C_q with $p \ge q$ such that $\bigcup_{i=1}^p V(D_i) \subseteq \bigcup_{j=1}^q V(C_j)$. By modifying the proof we can easily improve this result as follows:

Lemma 3. If G is a claw-free graph and D_1, \ldots, D_p are mutually vertex-disjoint cycles in cl(G), then G has mutually vertex-disjoint cycles C_1, \ldots, C_q with $p \ge q$ such that for each D_i , there exists C_j such that $V(D_i) \subseteq V(C_j)$.

If $cl(G_0)$ has a 2-factor $\bigcup_{i=1}^p D_i$ in which each cycle D_i contains at least l-1 vertices in S_0 , then by the above lemma, G_0 has vertex-disjoint cycles C_1, \ldots, C_q such that for each D_i , there exists C_i such that $V(D_i) \subseteq V(C_i)$. Since

$$|C_j \cap S_0| \ge |D_i \cap S_0| \ge l-1$$
 and $\bigcup_{i=1}^p V(D_i) = V(cl(G_0)) = V(G_0),$

 $\bigcup_{j=1}^{q} C_j$ is a 2-factor of G_0 with the required properties. We rephrase moreover the above statement using the following result.

Lemma B (*Ryjáček* [10]). For any claw-free graph G, there exists a triangle-free graph H such that L(H) = cl(G).

Let H_0 be a triangle-free graph such that $L(H_0) = cl(G_0)$. By the above facts, for Theorem 1, it is sufficient to show that:

 $L(H_0)$ has a 2-factor in which each cycle contains at least l - 1 vertices in S_0 .

Let *H* be a graph and \mathcal{D} a set of mutually edge-disjoint closed trails and stars in *H*. If every star has at least three edges and every edge in $E(G) \setminus \bigcup_{D \in \mathcal{D}} E(D)$ is incident to a closed trail in \mathcal{D} , then \mathcal{D} is called a *system that dominates H*. Gould and Hynds [7] showed that the line graph L(H) has a 2-factor with *c* cycles if and only if there exists a system that dominates *H* with *c* elements. Hence, we look for a system that dominates H_0 such that the corresponding 2-factor of $L(H_0)$ satisfies (1).

The set in H_0 corresponding to S_0 is an edge set. We denote the edge set also by S_0 . Notice that S_0 is independent in G_0 , but S_0 is not always independent in $L(H_0) = cl(G_0)$, i.e.,

 S_0 is possibly not independent in H_0 .

In either case, the following claim implies (1) immediately.

(1)

Download English Version:

https://daneshyari.com/en/article/4648491

Download Persian Version:

https://daneshyari.com/article/4648491

Daneshyari.com