Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

The maximum radius of graphs with given order and minimum degree

Byeong Moon Kim^a, Yoomi Rho^b, Byung Chul Song^a, Woonjae Hwang^{c,*}

^a Department of Mathematics, Gangneung-Wonju National University, Gangneung 210-702, Republic of Korea

^b Department of Mathematics, University of Incheon, Incheon 406-772, Republic of Korea

^c Department of Information and Mathematics, Korea University, Jochiwon 339-700, Republic of Korea

ARTICLE INFO

Article history: Received 25 February 2010 Received in revised form 19 August 2011 Accepted 20 August 2011 Available online 28 September 2011

Keywords: Radius Minimum degree Order

ABSTRACT

Let *G* be a graph with order *n* and minimum degree $\delta(\geq 2)$. Erdős et al. found an upper bound of the radius *r* of *G*, which is $\frac{3}{2}\frac{n+1}{d+1} + 5$. They noted that this bound is tight apart from the exact value of the additive constant. In this paper, when $r \geq 3$, we decrease this bound to $\lfloor \frac{3}{2}\frac{n}{d+1} \rfloor$, the extremal value.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Klee and Quaife [4] found the minimum order of graphs with given diameter, connectivity and minimum degree. Especially for regular graphs, there are further results [1,2]. The extremal 3-regular graphs are classified except when they have connectivity 3 and even diameter [3,5,6]. Erdős et al. [7] gave an upper bound for the maximum diameter of graphs with given order *n* and minimum degree δ . They also proved that $\frac{3}{2}\frac{n-3}{\delta+1} + 5$ is an upper bound of the radius *r* of the graph. They pointed out that this bound is sharp up to constant. In this paper, when $r \ge 3$, we decrease this upper bound to $\lfloor \frac{3}{2} \frac{n}{\delta+1} \rfloor$, the extremal value.

Let G = (V, E) be a graph with radius $\operatorname{rad}(G) = r$. Assume that the minimum degree of G is δ . Let v_0 be the center of G. Then there is $v_0^* \in V$ such that $\operatorname{dist}(v_0, v_0^*) = r$. Define $S_i = \{y \in V | \operatorname{dist}(v_0, y) = i\}$ and let $a_i = |S_i|$ for $0 \le i \le r$. Further we define $S_{\le j} = \bigcup_{0 \le i \le j} S_i$ and $S_{\ge j} = \bigcup_{j \le i \le r} S_i$. We also write the neighborhood of a vertex $v \in V$ by N[v]. Note that $|N[v]| \ge \delta + 1$ and $|V| \ge d(\delta + 1)$ if some elements $x_1, \ldots, x_d \in V$ have mutually disjoint neighborhoods.

2. Some lemmas

Lemma 1. In S_i , there is a pair of vertices at distance at least 3 when $3 \le i \le r - 3$.

Proof. Suppose there is $i(3 \le i \le r - 3)$ such that $dist(u, v) \le 2$ for any $u, v \in S_i$. Choose $u_3 \in S_3$ such that there is $u \in S_i$ with $dist(u_3, u) = i - 3$. For all $y \in S_{\ge i}$, $y \in S_{i+h}$ for some $0 \le h \le r - i$. Choose $v_y \in S_i$ such that $dist(v_y, y) = h$. We have

 $dist(u_3, y) \le dist(u_3, u) + dist(u, v_y) + dist(v_y, y) \le i - 3 + 2 + h \le r - 1.$

For all $y \in S_{\leq i-1}$, we have

 $dist(u_3, y) \le dist(u_3, v_0) + dist(v_0, y) = 3 + i - 1 \le r - 1.$

This is a contradiction. \Box

^{*} Corresponding author.

E-mail addresses: kbm@gwnu.ac.kr (B.M. Kim), rho@incheon.ac.kr (Y. Rho), bcsong@gwnu.ac.kr (B.C. Song), woonjae@korea.ac.kr (W. Hwang).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2011.08.023

Lemma 2. For any $3 \le i \le r - 3$, we have $a_{i-1} + a_i + a_{i+1} \ge 2(\delta + 1)$.

Proof. By Lemma 1, there is a pair $u_1, u_2 \in S_i$ such that $dist(u_1, u_2) \geq 3$. Since $N[u_1], N[u_2] \subset S_{i-1} \cup S_i \cup S_{i+1}$ and $N[u_1] \cap N[u_2] = \emptyset, a_{i-1} + a_i + a_{i+1} \geq |N[u_1] \cup N[u_2]| \geq 2(\delta + 1)$. \Box

Lemma 3. 1. If there are $x, y \in S_2$ with dist(x, y) = 4, then $2a_0 + 2a_1 + 2a_2 + a_3 \ge 4(\delta + 1)$.

2. If there are $x, y \in S_{r-2}$ with dist $(x, y) \ge 4$ and there are $x', y' \in S_{r-1}$ such that $\{x, x'\}, \{y, y'\} \in E$, then $2a_r + 2a_{r-1} + 2a_{r-2} + a_{r-3} \ge 4(\delta + 1)$.

- **Proof.** 1. Since $x, y \in S_2$, there are $v_1, w_1 \in S_1$ such that $\{v_1, x\}, \{w_1, y\} \in E$. Since dist(x, y) = 4, we have dist $(x, w_1) \ge 3$ and dist $(y, v_1) \ge 3$. So for any $z \in S_0 \cup S_1 \cup S_2$, z is contained in at most two of the four sets $N[v_1], N[w_1], N[x]$ and N[y]. And for any $z' \in S_3$, z' is contained in at most one of the four sets $N[v_1], N[w_1], N[x]$ and N[y]. We have $2(a_0 + a_1 + a_2) + a_3 \ge 4(\delta + 1)$.
- 2. The proof of (2) is similar to that of (1). \Box

Since dist $(v_0, v_0^*) = r$, there is a path $v_0 \to v_1 \to \cdots \to v_r = v_0^*$ with $v_i \in S_i (0 \le i \le r)$. Since rad(G) = r, there is $v_2^* \in V$ such that dist $(v_2, v_2^*) = r$. Let dist $(v_0, v_2^*) = s$. Then there is a path $v_0 = w_0 \to w_1 \to \cdots \to w_s = v_2^*$ with $w_i \in S_i (0 \le i \le s)$. Clearly, $w_s \in S_{r-2}$. If $w_s \in S_{r-2}$, then dist $(v_2, w_2) = 4$ and dist $(v_{r-2}, w_s) \ge 4$.

Lemma 4. Assume $w_s \in S_{r-2}$ $(r \ge 4)$. If dist $(v_i, w_j) \le 2$ for some $2 \le i \le r$ and $0 \le j \le r-2$, then j = i-2.

Proof. If j < i - 2, then

 $r = \text{dist}(v_0, v_r) \le \text{dist}(v_0, w_i) + \text{dist}(w_i, v_i) + \text{dist}(v_i, v_r) \le j + 2 + r - i < r,$

a contradiction. If j > i - 2, then

 $r = \operatorname{dist}(v_2, w_s) \le \operatorname{dist}(v_2, v_i) + \operatorname{dist}(v_i, w_i) + \operatorname{dist}(w_i, w_s) \le i - 2 + 2 + s - j < r$

a contradiction. So j = i - 2. \Box

3. Main theorems

Theorem 1. Let G be a graph with radius $r(\geq 3)$ and minimum degree $\delta(\geq 2)$. Then the order n of G satisfies

$$n \ge \frac{2}{3}r(\delta + 1).$$

Proof. If r = 3k, then since $a_0 + a_1 \ge \delta + 1$, $a_{r-1} + a_r \ge \delta + 1$ and by Lemma 2,

$$|V| = \sum_{i=0}^{r} a_i = a_0 + a_1 + \sum_{i=1}^{k-1} (a_{3i-1} + a_{3i} + a_{3i+1}) + a_{r-1} + a_r \ge 2k(\delta + 1) = \frac{2}{3}r(\delta + 1).$$

Consider the case where r = 3k + 1. Suppose that $w_s \in S_{r-1} \cup S_r$. Then $dist(v_{r-1}, w_s) \ge dist(w_s, v_2) - dist(v_{r-1}, v_2) = r - (r - 3) = 3$. Since $N[v_{r-1}] \cap N[w_s] = \emptyset$, $a_r + a_{r-1} + a_{r-2} \ge 2(\delta + 1)$. We have

$$\begin{aligned} |V| &= \sum_{i=0}^{r} a_i = a_0 + a_1 + \sum_{i=1}^{k-1} (a_{3i-1} + a_{3i} + a_{3i+1}) + a_{r-2} + a_{r-1} + a_r \\ &\ge (2k+1)(\delta+1) > \left(2k + \frac{2}{3}\right)(\delta+1) = \frac{2}{3}r(\delta+1). \end{aligned}$$

Assume that $w_s \in S_{r-2}$. Then dist $(v_2, w_2) = 4$ and dist $(v_{r-2}, w_s) \ge 4$. If dist $(v_r, w_s) = 2$, then there is a vertex $x \in S_{r-1}$ such that $\{w_s, x\} \in E$. So by Lemma 3,

 $2(a_0 + a_1 + a_2) + a_3 \ge 4(\delta + 1)$

and

 $2(a_r + a_{r-1} + a_{r-2}) + a_{r-3} \ge 4(\delta + 1).$

By Lemma 2,

$$\sum_{i=1}^{k-1} (a_{3i-1} + a_{3i} + a_{3i+1}) \ge 2(k-1)(\delta+1),$$

$$\sum_{i=1}^{k-2} (a_{3i+1} + a_{3i+2} + a_{3i+3}) \ge 2(k-2)(\delta+1)$$

Download English Version:

https://daneshyari.com/en/article/4648492

Download Persian Version:

https://daneshyari.com/article/4648492

Daneshyari.com