

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Further results on optimal (v, 4, 2, 1)-OOCs

Xiaomiao Wang, Yanxun Chang*

Institute of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China

ARTICLE INFO

Article history: Received 24 November 2010 Received in revised form 3 September 2011 Accepted 20 September 2011 Available online 24 October 2011

Keywords: Optical orthogonal code Optimal Good difference matrix

ABSTRACT

Let $\Phi(v,k,\lambda_a,\lambda_c)$ denote the maximum possible size among all $(v,k,\lambda_a,\lambda_c)$ -OOCs. A $(v,k,\lambda_a,\lambda_c)$ -OOC is said to be *optimal* if its size is equal to $\Phi(v,k,\lambda_a,\lambda_c)$. In this paper, the constructions and the sizes of optimal (v,4,2,1)-OOCs are investigated. An upper bound for $\Phi(v,4,2,1)$ is improved. The exact value of $\Phi(v,4,2,1)$ with $v\leq 201$ is given with the aid of computer search. An optimal (24hv,4,2,1)-OOC with $h\in\{1,2\}$ and $v=p_1p_2\cdots p_r$, where prime $p_i\equiv 1\pmod{6}$ is constructed recursively. The existence of g-regular (gp,4,2,1)-OOCs for g=3,6,9,16, and p a prime satisfying a suitable congruence is established by direct constructions. Furthermore, the sizes of several new infinite classes of optimal (v,4,2,1)-OOCs are obtained. In particular, $\Phi(v,4,2,1)=U(v)$ for positive integer $v\equiv 80,400\pmod{480}$.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A $(v, k, \lambda_a, \lambda_c)$ optical orthogonal code (or $(v, k, \lambda_a, \lambda_c)$ -OOC) can be viewed as a collection $\mathcal{C} = \{C_1, C_2, \dots, C_s\}$ of k-subsets (codeword-sets) of Z_v , such that any two distinct translates of a codeword-set share at most λ_a elements, while any two translates of two distinct codeword-sets share at most λ_c elements:

- (1) (the auto-correlation property) $|C_i \cap (C_i + t)| \le \lambda_a$ for $1 \le i \le s$ and $1 \le t \le v 1$;
- (2) (the cross-correlation property) $|C_i \cap (C_i + t)| \le \lambda_c$ for $1 \le i \ne j \le s$ and $0 \le t \le v 1$.

The number of codeword-sets is called the *size* of \mathcal{C} . Let $\Phi(v, k, \lambda_a, \lambda_c)$ denote the maximum possible size among all $(v, k, \lambda_a, \lambda_c)$ -OOCs. A $(v, k, \lambda_a, \lambda_c)$ -OOC is said to be *optimal* if its size is equal to $\Phi(v, k, \lambda_a, \lambda_c)$. When $\lambda_a = \lambda_c = \lambda$, the notations of (v, k, λ) -OOC and $\Phi(v, k, \lambda)$ are employed. From the definition of optimal OOC, it is straightforward that an optimal OOC exists for all parameter values: it is simply an OOC of the largest possible size. For given parameters v, k, λ_a and λ_c , the constructions and determining the sizes of optimal $(v, k, \lambda_a, \lambda_c)$ -OOCs are apparently difficult tasks. It is well known that the size of a (v, k, λ) -OOC cannot exceed the Johnson bound (see [26]), that is,

$$\Phi(v, k, \lambda) \leq J(v, k, \lambda)$$

where
$$J(v, k, \lambda) = \lfloor \frac{1}{k} \lfloor \frac{v-1}{k-1} \lfloor \cdots \lfloor \frac{v-\lambda}{k-\lambda} \rfloor \cdots \rfloor \rfloor \rfloor$$
.

Optical orthogonal codes have many important applications because of their good correlation properties. This was first motivated by an application in a fiber-optic code-division multiple-access (CDMA) channel. Recent work has been done on using OOCs for multimedia transmission in fiber-optic local-area networks (LANs) and in multi-rate fiber-optic CDMA systems. The reader may refer to [23,24,28,33] for details.

^{*} Corresponding author. E-mail address: yxchang@bjtu.edu.cn (Y. Chang).

For a long time, research on OOCs has mainly concentrated on the case $\lambda_a = \lambda_c = \lambda$ in the literature. Constructions of optimal (v, k, 1)-OOCs has been investigated in [8,23]. It is often closely related to *difference families* [1,7,13,20,21,35] and to *relative difference families* [9,10,15–19,27,31] in view of their importance in design theory [2,6]. Recently, several results have also been done on optimal (v, k, λ) -OOCs with $\lambda = 2$ [3,22,25] and even with $\lambda > 2$ [4].

There is little in the literature regarding optimal $(v, k, \lambda_a, \lambda_c)$ -OOCs with $\lambda_a \neq \lambda_c$. An earlier investigation about them was given in [34], where it is shown that the size of a $(v, k, \lambda_a, \lambda_c)$ -OOC cannot exceed $\frac{\lambda_a(v-1)(v-2)\cdots(v-\lambda_c)}{k(k-1)(k-2)\cdots(k-\lambda_c)}$ with $\lambda_a \geq \lambda_c$. Known results on optimal (v, k, k-1, 1)-OOCs (which are also called *conflict-avoiding codes*) have been treated in [29,30]. The research on optimal (v, 4, 2, 1)-OOCs was first dealt with in [32], where several direct and recursive constructions for optimal (v, 4, 2, 1)-OOCs were presented. Later in [14], the constructions of perfect (v, 4, 2, 1)-OOCs were given for several infinite classes. In [5], all optimal (v, 4, 2, 1)-OOCs with v < 71 are determined up to equivalence.

In this paper, we shall investigate the sizes and constructions of optimal (v, 4, 2, 1)-OOCs. In the next section, we introduce the concept of good difference matrix and state recursive constructions for (v, 4, 2, 1)-OOCs. In Section 3, we improve the upper bound of the sizes of optimal (v, 4, 2, 1)-OOCs, and we also give direct constructions of optimal (v, 4, 2, 1)-OOCs for $v \le 201$ with the aid of computer. In Section 4, we construct optimal (24hv, 4, 2, 1)-OOCs with $h \in \{1, 2\}$ and $v = p_1p_2\cdots p_r$, where prime $p_i \equiv 1 \pmod{6}$. Finally, in Section 5, we establish the existence of a g-regular (gp, 4, 2, 1)-OOC with g = 3, 6, 9, 16, and obtain three new infinite classes of optimal (v, 4, 2, 1)-OOCs.

2. Recursive constructions

Let $K = (v_1, v_2, v_3)$ - v_4 be a kite, that is, the graph consisting of a triangle $\{v_1, v_2, v_3\}$ with an attached edge $\{v_3, v_4\}$. An (n, K, 1) difference matrix, briefly DM(n, K, 1), is a $4 \times n$ matrix with entries in Z_n , such that the differences between its i-th row and its j-th row is a permutation of Z_n whenever v_i and v_j are adjacent in K. (For the definition of an (n, Γ, λ) difference matrix where Γ is any graph and λ is any positive integer, the reader is referred to [11]). A DM(n, K, 1) is called good if it is of the form

$$\begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a_1 + b_1 & a_2 + b_2 & \dots & a_n + b_n \\ 0 & 0 & \dots & 0 \\ 2a_1 + b_1 & 2a_2 + b_2 & \dots & 2a_n + b_n \end{pmatrix}.$$

The following result can be found in [32].

Lemma 2.1 ([32]). If gcd(n, 6) = 1, then

$$\begin{pmatrix} 1 & 2 & \dots & n \\ 2 \cdot 1 & 2 \cdot 2 & \dots & 2 \cdot n \\ 0 & 0 & \dots & 0 \\ 3 \cdot 1 & 3 \cdot 2 & \dots & 3 \cdot n \end{pmatrix}$$

is a good (n, K, 1) difference matrix.

In order to state Lemmas 2.2 and 2.3, we recall some basic terminologies defined in [14].

For a given subset C of Z_v , its *list of differences* is denoted by ΔC , that is the multiset of all differences x-y with (x,y) an ordered pair of distinct elements of C. The underlying set of ΔC is called the *support* of ΔC and it is denoted by $\operatorname{supp}(\Delta C)$. More generally, the list of differences of a set C of subsets of C is the multiset $C = \bigcup_{C \in C} \Delta C$. Also, the support of C is the underlying set of C.

If δ is the size of supp(ΔC), namely the number of distinct differences appearing in ΔC , we will say that C is of *type* $t(C) = \delta$. It is obvious that t(C) cannot exceed the size of ΔC , that is $t(C) \leq k(k-1)$ where k is the size of C. Saying that C is of type $[\delta_i^{x_1}, \delta_i^{x_2}, \dots, \delta_i^{x_t}]$, we mean that C has exactly x_i codeword-sets of type δ_i for $i = 1, 2, \dots, t$.

is of type $[\delta_1^{x_1}, \delta_2^{x_2}, \dots, \delta_t^{x_t}]$, we mean that \mathcal{C} has exactly x_i codeword-sets of type δ_i for $i=1,2,\dots,t$. The missing differences of a $(v,k,\lambda_a,1)$ -OOC \mathcal{C} is the set \mathcal{M} of \mathcal{Z}_v that are not covered by the list of differences of \mathcal{C} . If the OOC is of type $[\delta_1^{x_1}, \delta_2^{x_2}, \dots, \delta_t^{x_t}]$, it is clear that $m=|\mathcal{M}|=v-(\delta_1x_1+\delta_2x_2+\dots+\delta_tx_t)$. If \mathcal{M} is a subgroup of \mathcal{Z}_v , then the OOC is called m-regular.

The following constructions come from Theorem 5.3 of [32], here we rewrite it with two lemmas using the concept of good difference matrix.

Lemma 2.2. Suppose that there exist both a g-regular (gm, 4, 2, 1)-OOC \mathcal{F} such that $|\operatorname{supp}(\Delta X)| = 8$ for every $X \in \mathcal{F}$, and a good $\operatorname{DM}(n, K, 1)$. Then there exists a gn-regular (gmn, 4, 2, 1)-OOC \mathcal{F}' satisfying $|\operatorname{supp}(\Delta Y)| = 8$ for $Y \in \mathcal{F}'$.

Lemma 2.3. If there are a gm-regular (gmn, 4, 2, 1)-OOC \mathcal{F} such that $|\text{supp}(\Delta X)| = 8$ for every $X \in \mathcal{F}$, and a (gm, 4, 2, 1)-OOC \mathcal{F}' with size s, then there exists a (gmn, 4, 2, 1)-OOC with size gm(n - 1)/8 + s that is g-regular if \mathcal{F}' is such. Moreover, every codeword-set Y of the resultant OOC satisfies $|\text{supp}(\Delta Y)| = 8$ if \mathcal{F}' has the same property.

Download English Version:

https://daneshyari.com/en/article/4648505

Download Persian Version:

https://daneshyari.com/article/4648505

Daneshyari.com