

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 309 (2009) 354-362

www.elsevier.com/locate/disc

The spectrum of Meta($K_3 + e > P_4, \lambda$) and Meta($K_3 + e > H_4, \lambda$) with any λ^{\ddagger}

Giovanni Lo Faro*, Antoinette Tripodi

Department of Mathematics, University of Messina, Contrada Papardo, 31-98166 Sant'Agata, Messina, Italy

Received 27 June 2006; accepted 5 December 2007 Available online 7 January 2008

Abstract

Let (X, \mathcal{B}) be a $(\lambda K_v, G_1)$ -design and G_2 a subgraph of G_1 . Define sets $\mathcal{B}(G_2)$ and $\mathcal{D}(G_1 \setminus G_2)$ as follows: for each block $B \in \mathcal{B}$, partition B into copies of G_2 and $G_1 \setminus G_2$ and place the copy of G_2 in $\mathcal{B}(G_2)$ and the edges belonging to the copy of $G_1 \setminus G_2$ in $\mathcal{D}(G_1 \setminus G_2)$. If the edges belonging to $\mathcal{D}(G_1 \setminus G_2)$ can be assembled into a collection $\mathcal{D}(G_2)$ of copies of G_2 , then $(X, \mathcal{B}(G_2) \cup \mathcal{D}(G_2))$ is a $(\lambda K_v, G_2)$ -design, called a *metamorphosis* of the $(\lambda K_v, G_1)$ -design (X, \mathcal{B}) . For brevity we denote such $(\lambda K_v, G_1)$ -design (X, \mathcal{B}) with a metamorphosis into $(\lambda K_v, G_2)$ -design $(X, \mathcal{B}(G_2) \cup \mathcal{D}(G_2))$ by $(\lambda K_v, G_1 > G_2)$ -design. Let $Meta(G_1 > G_2, \lambda)$ denote the set of all integers v such that there exists a $(\lambda K_v, G_1 > G_2)$ -design. In this paper we completely determine the set $Meta(K_3 + e > P_4, \lambda)$ or $Meta(K_3 + e > H_4, \lambda)$ when the admissible conditions are satisfied, for any λ . (© 2007 Elsevier B.V. All rights reserved.

Keywords: G-design; Metamorphosis; Balanced design; Differences; Cyclic and 1-rotational design

1. Introduction

Let *G* and *K* be simple finite graphs, and let λK denote the graph *K* with each of its edges replicated λ times. A λ -fold *G*-design of order v ((λK_v , *G*)-design in short) is a pair (*X*, *B*), where *X* is the vertex set of λK_v and *B* is a collection of isomorphic copies (called *blocks*) of the graph *G* whose edges partition the edges of λK_v . If $\lambda = 1$, we drop the term "1-fold". For terms not defined in this paper or results not explicitly cited the reader is referred to *The CRC Handbook* of *Combinatorial Designs* [7].

Let (X, \mathcal{B}) be a $(\lambda K_v, G_1)$ -design and G_2 a subgraph of G_1 . Define sets $\mathcal{B}(G_2)$ and $\mathcal{D}(G_1 \setminus G_2)$ as follows: for each block $B \in \mathcal{B}$, partition B into copies of G_2 and $G_1 \setminus G_2$ and place the copy of G_2 in $\mathcal{B}(G_2)$ and the edges belonging to the copy of $G_1 \setminus G_2$ in $\mathcal{D}(G_1 \setminus G_2)$. If the edges belonging to $\mathcal{D}(G_1 \setminus G_2)$ can be assembled into a collection $\mathcal{D}(G_2)$ of copies of G_2 , then $(X, \mathcal{B}(G_2) \cup \mathcal{D}(G_2))$ is a $(\lambda K_v, G_2)$ -design, called a *metamorphosis* of the λ -fold G_1 -design (X, \mathcal{B}) .

For brevity we denote such G_1 -design of $\lambda K_v(X, \mathcal{B})$ with a metamorphosis into G_2 -design of $\lambda K_v(X, \mathcal{B}(G_2) \cup \mathcal{D}(G_2))$ by $(\lambda K_v, G_1 > G_2)$ -design, or $(X, \mathcal{B}, \mathcal{B}(G_2) \cup \mathcal{D}(G_2))$. Let $Meta(G_1 > G_2, \lambda)$ denote the *spectrum* for $(\lambda K_v, G_1 > G_2)$ -designs, i.e. the set of all integers v such that there exists a $(\lambda K_v, G_1 > G_2)$ -design.

0012-365X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.12.016

[☆] Supported in part by M.U.R.S.T. "Strutture geometriche, combinatoria e loro applicazioni", COFIN., P.R.A. and I.N.D.A.M. (G.N.S.A.G.A.). * Corresponding author.

E-mail addresses: lofaro@unime.it (G. Lo Faro), tripodi@dipmat.unime.it (A. Tripodi).

355

Recently the spectrum of Meta($G_1 > G_2$, λ) has been determined for each pair (G_1 , G_2) = ($K_{3,3}$, C_6), (4-wheel, bowtie), (4-wheel, C_4), (K_4 , K_3), (K_4 , $K_3 + e$), (K_4 , C_4), ($K_4 + e$, K_4), and ($K_4 - e$, $K_3 + e$) with any λ by several researchers (see [1–3,5,6,10,12,14]). For a brief history of further work on the metamorphosis of *G*-design, see the introduction to [2]. Other recent papers on metamorphosis are included in [11,13,15,16].

In what follows we will denote the copy of $K_3 + e$ (kite) with vertices a, b, c, d containing the K_3 (a, b, c) and the dangling edge cd by (a, b, c) - d, and the copy of P_4 with vertices a, b, c, d containing the edges $\{a, b\}, \{b, c\}, \{c, d\}$ by (a, b, c, d). Suppose that \mathcal{B} is a collection of isomorphic copies of the graph $K_3 + e$. Define \mathcal{B}^* and $\mathcal{D}_{\mathcal{B}}$ as follows: For each block $(a, b, c) - d \in \mathcal{B}$, delete the edge $\{b, c\}$ and place the copy of P_4 in \mathcal{B}^* and the deleted edge in $\mathcal{D}_{\mathcal{B}}$. Further, let (X, \mathcal{B}) be a $(\lambda K_v, K_3 + e)$ -design, then $(X, \mathcal{B}, \mathcal{B}^* \cup \mathcal{B}')$ is a $(\lambda K_v, K_3 + e > P_4)$ -design if $\mathcal{D}_{\mathcal{B}}$ can be partitioned into a collection \mathcal{B}' of copies of P_4 . In this paper, we deal with Meta $(K_3 + e > P_4, \lambda)$ for any λ .

Necessary conditions: Recall that a $(\lambda K_v, K_3 + e)$ -design exists if and only if $\lambda v(v - 1) \equiv 0 \pmod{8}$ (see [10]); a $(\lambda K_v, P_4)$ -design exists if and only if $\lambda v(v - 1) \equiv 0 \pmod{6}$ (see [9]). The following are the necessary conditions for their existence:

$\overline{(\lambda K_v, K_3 + e)}$ -design		$(\lambda K_v, P_4)$ -design	
$\lambda \pmod{4} > 0$	υ	$\lambda \pmod{3} > 0$	v
1, 3	$v \equiv 0, 1 \pmod{8}$	1, 2	$v \equiv 0, 1 \pmod{3}$
2	$v \equiv 0, 1 \pmod{4}$	3	all $v \ge 4$
4	all $v \ge 4$		

We require the intersection of those conditions for the possible existence of a $(\lambda K_v, K_3 + e > P_4)$ -design, which are as listed below.

$\overline{\lambda \pmod{12}} > 0$	v
1, 5, 7, 11	$v \equiv 0, 1, 9, 16 \pmod{24}$
2, 10	$v \equiv 0, 1, 4, 9 \pmod{12}$
3,9	$v \equiv 0, 1 \pmod{8}$
4, 8	$v \equiv 0, 1 \pmod{3}$
6	$v \equiv 0, 1 \pmod{4}$
12	$v \ge 4$

Consequently in the subsequent sections we will deal with the set $Meta(K_3 + e > P_4, \lambda)$ with the cases λ equal to 1, 2, 3, 4, 6, 12; to solve these cases we use the *difference method* (see [4,8]). Note that, throughout the paper, applying the difference method gives cyclic or 1-rotational designs.

Let G = (V(G), E(G)) be a graph with $V(G) \subseteq Z_n$ and $G + i = \{\{a + i, b + i\} | \{a, b\} \in E(G)\}, i \in Z_n$. A $(\lambda K_v, G)$ -design (X, \mathcal{B}) is *cyclic* or 1-*rotational* if $X = Z_v$ or $X = Z_{v-1} \cup \{\infty\}$, respectively, and $B + 1 \in \mathcal{B}$ whenever $B \in \mathcal{B}$ (where $\infty + 1 = \infty$ is understood).

Let $D_n = \{d \in Z_n : 1 \le d \le \lfloor \frac{n}{2} \rfloor\}$. The elements of D_n are called *differences* of Z_n . Let G be a graph with $V(G) \subseteq Z_n \cup \{\infty\}$. The *list of differences* of G is the multiset

 $\triangle G = \{a - b \mid a, b \in V(G) - \{\infty\}, \{a, b\} \in E(G)\}.$

If \mathcal{B} is a collection of copies of G with vertices in $Z_n \cup \{\infty\}$, the list of differences of \mathcal{B} is the multiset $\Delta \mathcal{B} = \bigcup_{B \in \mathcal{B}} \Delta B$.

If the vertices of G are in $Z_n \cup \{\infty\}$, the *orbit* of G under Z_n is the set $\{G + i : i \in Z_n\}$. To describe a cyclic or a 1-rotational $(\lambda K_v, G)$ -design, it is sufficient to give a collection of *base blocks*, i.e. a system of representatives for its orbits under Z_v or Z_{v-1} . Let \mathcal{B} be a collection of copies of G with vertices in X. It is easy to see that:

1. if $X = Z_v$ and $\Delta \mathcal{B} = \lambda D_v$, then the union of the orbits of the graphs of \mathcal{B} under Z_v is a cyclic ($\lambda K_v, G$)-design;

2. if $X = Z_{v-1} \cup \{\infty\}$, $\Delta \mathcal{B} = \lambda D_{v-1}$, and $\sum_{B \in \mathcal{B}} d_B(\infty) = \lambda$, where $d_B(\infty)$ is the degree of ∞ in B, then the union of the orbits of the graphs of \mathcal{B} under Z_{v-1} is a 1-rotational (λK_v , G)-design.

A $(\lambda K_v, G)$ -design is said to be *balanced* if each vertex belongs to exactly *r* blocks. A cyclic $(\lambda K_v, G)$ -design is a balanced $(\lambda K_v, G)$ -design. Denote a balanced $(\lambda K_v, P_4)$ -design by $(\lambda K_v, H_4)$ -design. In [9] it is proved that

Download English Version:

https://daneshyari.com/en/article/4648665

Download Persian Version:

https://daneshyari.com/article/4648665

Daneshyari.com