The spectrum of $\operatorname{Meta}\left(K_{3}+e>P_{4}, \lambda\right)$ and $\operatorname{Meta}\left(K_{3}+e>H_{4}, \lambda\right)$ with any $\lambda^{\lambda /}$

Giovanni Lo Faro*, Antoinette Tripodi
Department of Mathematics, University of Messina, Contrada Papardo, 31-98166 Sant'Agata, Messina, Italy

Received 27 June 2006; accepted 5 December 2007
Available online 7 January 2008

Abstract

Let (X, \mathcal{B}) be a $\left(\lambda K_{v}, G_{1}\right)$-design and G_{2} a subgraph of G_{1}. Define sets $\mathcal{B}\left(G_{2}\right)$ and $\mathcal{D}\left(G_{1} \backslash G_{2}\right)$ as follows: for each block $B \in \mathcal{B}$, partition B into copies of G_{2} and $G_{1} \backslash G_{2}$ and place the copy of G_{2} in $\mathcal{B}\left(G_{2}\right)$ and the edges belonging to the copy of $G_{1} \backslash G_{2}$ in $\mathcal{D}\left(G_{1} \backslash G_{2}\right)$. If the edges belonging to $\mathcal{D}\left(G_{1} \backslash G_{2}\right)$ can be assembled into a collection $\mathcal{D}\left(G_{2}\right)$ of copies of G_{2}, then $\left(X, \mathcal{B}\left(G_{2}\right) \cup \mathcal{D}\left(G_{2}\right)\right)$ is a $\left(\lambda K_{v}, G_{2}\right)$-design, called a metamorphosis of the $\left(\lambda K_{v}, G_{1}\right)$-design (X, \mathcal{B}). For brevity we denote such $\left(\lambda K_{v}, G_{1}\right)$-design (X, \mathcal{B}) with a metamorphosis into ($\lambda K_{v}, G_{2}$)-design ($X, \mathcal{B}\left(G_{2}\right) \cup \mathcal{D}\left(G_{2}\right)$) by ($\lambda K_{v}, G_{1}>G_{2}$)-design. Let $\operatorname{Meta}\left(G_{1}>G_{2}, \lambda\right)$ denote the set of all integers v such that there exists a ($\lambda K_{v}, G_{1}>G_{2}$)-design. In this paper we completely determine the set $\operatorname{Meta}\left(K_{3}+e>P_{4}, \lambda\right)$ or $\operatorname{Meta}\left(K_{3}+e>H_{4}, \lambda\right)$ when the admissible conditions are satisfied, for any λ. (C) 2007 Elsevier B.V. All rights reserved.

Keywords: G-design; Metamorphosis; Balanced design; Differences; Cyclic and 1-rotational design

1. Introduction

Let G and K be simple finite graphs, and let λK denote the graph K with each of its edges replicated λ times. A λ-fold G-design of order $v\left(\left(\lambda K_{v}, G\right)\right.$-design in short) is a pair (X, \mathcal{B}), where X is the vertex set of λK_{v} and \mathcal{B} is a collection of isomorphic copies (called blocks) of the graph G whose edges partition the edges of λK_{v}. If $\lambda=1$, we drop the term " 1 -fold". For terms not defined in this paper or results not explicitly cited the reader is referred to The CRC Handbook of Combinatorial Designs [7].

Let (X, \mathcal{B}) be a $\left(\lambda K_{v}, G_{1}\right)$-design and G_{2} a subgraph of G_{1}. Define sets $\mathcal{B}\left(G_{2}\right)$ and $\mathcal{D}\left(G_{1} \backslash G_{2}\right)$ as follows: for each block $B \in \mathcal{B}$, partition B into copies of G_{2} and $G_{1} \backslash G_{2}$ and place the copy of G_{2} in $\mathcal{B}\left(G_{2}\right)$ and the edges belonging to the copy of $G_{1} \backslash G_{2}$ in $\mathcal{D}\left(G_{1} \backslash G_{2}\right)$. If the edges belonging to $\mathcal{D}\left(G_{1} \backslash G_{2}\right)$ can be assembled into a collection $\mathcal{D}\left(G_{2}\right)$ of copies of G_{2}, then $\left(X, \mathcal{B}\left(G_{2}\right) \cup \mathcal{D}\left(G_{2}\right)\right)$ is a ($\left.\lambda K_{v}, G_{2}\right)$-design, called a metamorphosis of the λ-fold G_{1}-design (X, \mathcal{B}).

For brevity we denote such G_{1}-design of $\lambda K_{v}(X, \mathcal{B})$ with a metamorphosis into G_{2}-design of $\lambda K_{v}\left(X, \mathcal{B}\left(G_{2}\right) \cup\right.$ $\left.\mathcal{D}\left(G_{2}\right)\right)$ by $\left(\lambda K_{v}, G_{1}>G_{2}\right)$-design, or $\left(X, \mathcal{B}, \mathcal{B}\left(G_{2}\right) \cup \mathcal{D}\left(G_{2}\right)\right)$. Let $\operatorname{Meta}\left(G_{1}>G_{2}, \lambda\right)$ denote the spectrum for $\left(\lambda K_{v}, G_{1}>G_{2}\right)$-designs, i.e. the set of all integers v such that there exists a $\left(\lambda K_{v}, G_{1}>G_{2}\right)$-design.

[^0]Recently the spectrum of $\operatorname{Meta}\left(G_{1}>G_{2}, \lambda\right)$ has been determined for each pair $\left(G_{1}, G_{2}\right)=\left(K_{3,3}, C_{6}\right)$, (4-wheel, bowtie), (4-wheel, C_{4}), $\left(K_{4}, K_{3}\right),\left(K_{4}, K_{3}+e\right),\left(K_{4}, C_{4}\right),\left(K_{4}+e, K_{4}\right)$, and ($\left.K_{4}-e, K_{3}+e\right)$ with any λ by several researchers (see $[1-3,5,6,10,12,14]$). For a brief history of further work on the metamorphosis of G-design, see the introduction to [2]. Other recent papers on metamorphosis are included in [11, 13, 15,16].

In what follows we will denote the copy of $K_{3}+e$ (kite) with vertices a, b, c, d containing the $K_{3}(a, b, c)$ and the dangling edge $c d$ by $(a, b, c)-d$, and the copy of P_{4} with vertices a, b, c, d containing the edges $\{a, b\},\{b, c\}$, $\{c, d\}$ by (a, b, c, d). Suppose that \mathcal{B} is a collection of isomorphic copies of the graph $K_{3}+e$. Define \mathcal{B}^{*} and $\mathcal{D}_{\mathcal{B}}$ as follows: For each block $(a, b, c)-d \in \mathcal{B}$, delete the edge $\{b, c\}$ and place the copy of P_{4} in \mathcal{B}^{*} and the deleted edge in $\mathcal{D}_{\mathcal{B}}$. Further, let (X, \mathcal{B}) be a ($\left.\lambda K_{v}, K_{3}+e\right)$-design, then $\left(X, \mathcal{B}, \mathcal{B}^{*} \cup \mathcal{B}^{\prime}\right)$ is a $\left(\lambda K_{v}, K_{3}+e>P_{4}\right)$-design if $\mathcal{D}_{\mathcal{B}}$ can be partitioned into a collection \mathcal{B}^{\prime} of copies of P_{4}. In this paper, we deal with $\operatorname{Meta}\left(K_{3}+e>P_{4}, \lambda\right)$ for any λ.
Necessary conditions: Recall that a $\left(\lambda K_{v}, K_{3}+e\right)$-design exists if and only if $\lambda v(v-1) \equiv 0(\bmod 8)($ see [10]); a $\left(\lambda K_{v}, P_{4}\right)$-design exists if and only if $\lambda v(v-1) \equiv 0(\bmod 6)$ (see [9]). The following are the necessary conditions for their existence:

$\left(\lambda K_{v}, K_{3}+e\right)$-design	$\left(\lambda K_{v}, P_{4}\right)$-design		
$\lambda(\bmod 4)>0$	v	$\lambda(\bmod 3)>0$	v
1,3	$v \equiv 0,1(\bmod 8)$	1,2	$v \equiv 0,1(\bmod 3)$
2	$v \equiv 0,1(\bmod 4)$	3	all $v \geq 4$
4	all $v \geq 4$		

We require the intersection of those conditions for the possible existence of a $\left(\lambda K_{v}, K_{3}+e>P_{4}\right.$)-design, which are as listed below.

$\lambda(\bmod 12)>0$	v
$1,5,7,11$	$v \equiv 0,1,9,16(\bmod 24)$
2,10	$v \equiv 0,1,4,9(\bmod 12)$
3,9	$v \equiv 0,1(\bmod 8)$
4,8	$v \equiv 0,1(\bmod 3)$
6	$v \equiv 0,1(\bmod 4)$
12	$v \geq 4$

Consequently in the subsequent sections we will deal with the set $\operatorname{Meta}\left(K_{3}+e>P_{4}, \lambda\right)$ with the cases λ equal to $1,2,3,4,6,12$; to solve these cases we use the difference method (see [4,8]). Note that, throughout the paper, applying the difference method gives cyclic or 1-rotational designs.

Let $G=(V(G), E(G))$ be a graph with $V(G) \subseteq Z_{n}$ and $G+i=\{\{a+i, b+i\} \mid\{a, b\} \in E(G)\}, i \in Z_{n}$. A $\left(\lambda K_{v}, G\right)$-design (X, \mathcal{B}) is cyclic or 1-rotational if $X=Z_{v}$ or $X=Z_{v-1} \cup\{\infty\}$, respectively, and $B+1 \in \mathcal{B}$ whenever $B \in \mathcal{B}$ (where $\infty+1=\infty$ is understood).

Let $D_{n}=\left\{d \in Z_{n}: 1 \leq d \leq\left\lfloor\frac{n}{2}\right\rfloor\right\}$. The elements of D_{n} are called differences of Z_{n}. Let G be a graph with $V(G) \subseteq Z_{n} \cup\{\infty\}$. The list of differences of G is the multiset

$$
\Delta G=\{a-b \mid a, b \in V(G)-\{\infty\},\{a, b\} \in E(G)\} .
$$

If \mathcal{B} is a collection of copies of G with vertices in $Z_{n} \cup\{\infty\}$, the list of differences of \mathcal{B} is the multiset $\Delta \mathcal{B}=\bigcup_{B \in \mathcal{B}} \Delta B$.

If the vertices of G are in $Z_{n} \cup\{\infty\}$, the orbit of G under Z_{n} is the set $\left\{G+i: i \in Z_{n}\right\}$. To describe a cyclic or a 1-rotational ($\lambda K_{v}, G$)-design, it is sufficient to give a collection of base blocks, i.e. a system of representatives for its orbits under Z_{v} or Z_{v-1}. Let \mathcal{B} be a collection of copies of G with vertices in X. It is easy to see that:

1. if $X=Z_{v}$ and $\triangle \mathcal{B}=\lambda D_{v}$, then the union of the orbits of the graphs of \mathcal{B} under Z_{v} is a cyclic ($\lambda K_{v}, G$)-design;
2. if $X=Z_{v-1} \cup\{\infty\}, \Delta \mathcal{B}=\lambda D_{v-1}$, and $\sum_{B \in \mathcal{B}} d_{B}(\infty)=\lambda$, where $d_{B}(\infty)$ is the degree of ∞ in B, then the union of the orbits of the graphs of \mathcal{B} under Z_{v-1} is a 1 -rotational ($\lambda K_{v}, G$)-design.
A $\left(\lambda K_{v}, G\right)$-design is said to be balanced if each vertex belongs to exactly r blocks. A cyclic $\left(\lambda K_{v}, G\right)$-design is a balanced $\left(\lambda K_{v}, G\right)$-design. Denote a balanced $\left(\lambda K_{v}, P_{4}\right)$-design by $\left(\lambda K_{v}, H_{4}\right)$-design. In [9] it is proved that

https://daneshyari.com/en/article/4648665

Download Persian Version:

https://daneshyari.com/article/4648665

Daneshyari.com

[^0]: ${ }^{\star}$ Supported in part by M.U.R.S.T. "Strutture geometriche, combinatoria e loro applicazioni", COFIN., P.R.A. and I.N.D.A.M. (G.N.S.A.G.A.).

 * Corresponding author.

 E-mail addresses: lofaro@unime.it (G. Lo Faro), tripodi@dipmat.unime.it (A. Tripodi).

