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Abstract

In this paper, we study the representation of W(2) in PG(2,4) related to a hyperoval. We provide a group-theoretic
characterization and some geometric ones.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In the theory of embeddings of generalized quadrangles in projective spaces one usually assumes that the projective
space has dimension at least three. This is obvious and even automatic if one considers natural additional conditions
such as being full or polarized. In the lax case — so without additional requirements — the condition on the dimension of
the projective space is necessary in order to be able to prove a partial classification; see [4]. Roughly, every embedded
finite classical generalized quadrangle (different from a symplectic one in odd characteristic) in PG(d, ¢), d > 3,
arises from its standard embedding by field extension and projection, or is a well-understood grumbling embedding
of a quadrangle with small parameters. The proof of this heavily uses the assumption d > 3. In fact, this result is no
longer true in dimension two (d = 2). Indeed, the hyperoval-embedding of W(2), the unique generalized quadrangle
of order 2, in PG(2, 4) does not arise from any embedding in PG(d, ¢) by projection, with d > 3 and ¢ = 4¢ (e a
positive integer). However, no other examples of this phenomenon are known. So, in order to start a theory of planar
embeddings of generalized quadrangles (and later on, more generally, generalized polygons), it seems worthwhile
to study this exceptional embedding of W(2) in PG(2, 4). The characterizations we will prove will point at the
exceptional character of this embedding, and feeds the conjecture that it might be “almost unique” (there are more
exceptional planar embeddings of W(2) that do not occur for other classical quadrangles).

In order to state our results precisely, we give our definitions and notation.

A generalized quadrangle (GQ) of order (s, t) is a point-line geometry S = (P, L, I) consisting of a set P of
points, a set £ of lines, and a symmetric incidence relation I satisfying the following conditions.

e Every line is incident with precisely s + 1 points and every point with precisely ¢ + 1 lines.
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e Two distinct points are never incident with two distinct lines.
e For every point x and every line L not incident with x, there exist a unique point y and a unique line M such that
xIMIyIL.

We will only be interested in finite generalized quadrangles, which is equivalent to restricting to finite s and 7. We
will use the following terminology. Two points (lines) incident with the same line (point) are collinear (concurrent);
two elements not incident with the same element are opposite. A spread of a GQ S = (P, L, I) is a set of lines of
S such that every point of S is incident with exactly one member of the spread. If we view the lines of S as sets of
points incident with them, then a spread is a partition of P into lines. An ovoid is the dual notion, i.e., we interchange
the role of points and lines in the definition of spread. It is well-known (see e.g. [2]) that every ovoid and every spread
of a GQ of order (s, t) contains precisely st + 1 elements.

A collineation ¢ of a GQ § = (P, L, I) is a pair of permutations of P and L (both denoted by ¢; this does not
cause any confusion) such that both ¢ and its inverse preserve the incidence relation I. The GQ S = (P, L, I) will be
called a translation generalized quadrangle (TGQ) with respect to the element X € P U L if there is a (necessarily
unique) commutative group G of collineations of S fixing all elements incident with X and acting sharply transitively
on the set of elements opposite X. The group G will be called the translation group with respect to X.

A duality ¢ of a GQ § = (P, L, I) is a pair of bijections from P to £ and from £ to P (both denoted by ¢;
this does not cause any confusion) such that both ¢ and its inverse preserve the incidence relation I. A GQ is called
self-dual if it admits a duality. A polarity is a duality of order 2. A self-polar GQ is one that admits a polarity. A group
of collineations and dualities will be called a correlation group.

Regarding collineations and dualities, we use the same terminology for projective spaces (so collineations preserve
the dimension of subspaces while dualities and polarities of PG(d, ¢) interchange subspaces of dimension k with
subspaces of dimension d — k — 1).

The GQ S = (P, L, I) of order (s, 1) is (laxly) embedded in PG(d, q), with d > 2, if P is a generating subset of
the point set of PG(d, ¢), if L is a subset of the line set of PG(d, ¢), and if a point x of S is incident with a line L of
Sin PG(d, q) as soon as xIL in S. The embedding is full if s = q; it is called polarized if, for every point x € P, the
set of points of S collinear in S with x does not generate PG(d, q); it is called grumbling if both s and ¢ are powers of
the same prime p and p does not divide g. If d = 2, we call the embedding planar. If G is a collineation (correlation)
group of S, then we call the embedding locally G-homogeneous if every element of G is the restriction to P U L of
a collineation (collineation or duality) of PG(d, q). It is called (globally) G-homogeneous if G is the restriction to
P U L of a collineation (correlation) group G” of PG(d, ¢) and |G| = |G'|.

Planar embeddings of generalized quadrangles exist in abundance. Indeed, consider any embedding of the GQ
S = (P, L,1) in PG(d, q). Possibly after extending PG(d, g) to PG(d, ¢¢), with e large enough, one can find a
subspace U of (projective) dimension d — 3 with the properties that (1) no subspace of dimension d — 2 containing
U meets P in at least two points, and (2) no hyperplane containing U contains at least two members of L. Projecting
P U L from U onto a plane skew to U yields a planar embedding. Obviously, such embeddings can never be full
or polarized. Also, one sees that usually s will be much smaller than ¢°. An embedding that does not arise from a
“proper” projection is called dominant.

The symplectic GQ W(q) is defined as follows. Its point set is the set of points of PG(3, ¢); its line set is the set
of fixed lines of a (fixed) symplectic polarity (and the incidence relation is inherited from PG(3, ¢)). This definition
yields a full and polarized embedding of W(gq) in PG(3, g). A zero-dimensional subspace U as above can only be
found for e > 2. Nevertheless, for ¢ = 2, there exists a planar embedding of W(2) in PG(2, 4). This embedding
can be described as follows. Fix a hyperoval H in PG(2, 4). Then it is well-known (see e.g. [1]) that the 15 points
of PG(2,4) not in H and 15 secant lines define a geometry isomorphic to W(2). We will call this embedding the
hyperoval-embedding of W(2). It is globally G-homogeneous, with G the full correlation group of W(2), which is
isomorphic to the automorphism group of the symmetric group on 6 letters.

The GQ W(2) has another natural embedding, from which all other embeddings in PG(d, ¢) with ¢ even follow (by
extension and projection as explained above). This embedding arises from a nonsingular quadric Q(4, 2) in PG4, 2).
Note that every ovoid of W(2) arises in this representation from the intersection with a(n elliptic) hyperplane (i.e., a
hyperplane meeting Q(4, 2) in an elliptic quadric Q™ (3, 2)).

The hyperoval-embedding of W(2) has interesting geometric properties. For instance, every ovoid is contained in
a line of PG(2, 4) and the lines of any spread of W(2) meet in a fixed point of the hyperoval . This is in accordance
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