Singletons and adjacencies of set partitions of type B

William Y.C. Chen ${ }^{\text {a }}$, David G.L. Wang ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, PR China
${ }^{\mathrm{b}}$ Beijing International Center for Mathematical Research, Peking University, Beijing 100871, PR China

A R T I C L E IN F O

Article history:

Received 16 October 2009
Received in revised form 18 November 2010
Accepted 19 November 2010
Available online 28 December 2010

Keywords:

Set partition of type B
Singleton
Adjacency
Symmetric distribution

Abstract

We show that the joint distribution of the number of singleton pairs and the number of adjacency pairs is symmetric over set partitions of type B_{n} without a zero block, in analogy with the result of Callan for ordinary partitions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The main objective of this paper is to give a type- B analogue of a property of set partitions discovered by Bernhart [1], namely, that the number s_{n} of partitions of $[n]=\{1,2, \ldots, n\}$ without singletons is equal to the number a_{n} of partitions of [n] for which no block contains two adjacent elements i and $i+1$ modulo n. In fact, it is easy to show that s_{n} and a_{n} have the same formula by the principle of inclusion-exclusion. Bernhart gave a recursive proof of the fact that $s_{n}=a_{n}$ by showing that $s_{n}+s_{n+1}=B_{n}$ and $a_{n}+a_{n+1}=B_{n}$, where B_{n} denotes the Bell number, namely, the number of partitions of [n]. As noted by Bernhart, there may be no simple way to bring the set of partitions of [n] without singletons and the set of partitions of [n] without adjacencies into a one-to-one correspondence.

From a different perspective, Callan [4] found a bijection in terms of an algorithm that interchanges singletons and adjacencies. Indeed, Callan has established a stronger statement that the joint distribution of the number of singletons and the number of adjacencies is symmetric over the set of partitions of $[n]$. While Callan's proof is purely combinatorial, we feel that there is still some truth in Bernhart's remark.

The study of singletons and adjacencies of partitions goes back to Kreweras [9] for noncrossing partitions. Kreweras has shown that the number of noncrossing partitions of $[n]$ without singletons equals the number of noncrossing partitions of [n] without adjacencies. Bernhart [1] found a combinatorial proof of this assertion. Deutsch and Shapiro [6] considered noncrossing partitions of $[n]$ without visible singletons, and showed that such partitions are enumerated by the Fine number. Here, a visible singleton of a partition means a singleton not covered by any arc in the linear representation. Canfield [5] has shown that the average number of singletons in a partition of [n] is an increasing function of n. Biane [2] has derived a bivariate generating function for the number of partitions of $[n]$ containing a given number of blocks but no singletons. Knuth [8] proposed the problem of finding the generating function for the number of partitions of [n] with a given number of

[^0]blocks but no adjacencies. The generating function has been found by several problem solvers; see Lossers [10], for example. The sequence of the numbers s_{n} is listed as the entry A000296 in Sloane [12].

The lattice of ordinary set partitions can be regarded as the intersection lattice for the hyperplane arrangement corresponding to the root system of type A; see Björner and Brenti [3] or Humphreys [7]. Type- B set partitions are a generalization of ordinary partitions from this point of view; see Reiner [11]. More precisely, ordinary set partitions encode the intersections of hyperplanes in the hyperplane arrangement for the type-A root system, while the intersections of subsets of hyperplanes from the type- B hyperplane arrangement can be encoded by type- B set partitions. A partition of type B_{n} is a partition π of the set

$$
[\pm n]=\{1,2, \ldots, n,-1,-2, \ldots,-n\}
$$

such that, for any block B of $\pi,-B$ is also a block of π, and such that π has at most one block, called the zero block, which is of the form $\left\{i_{1}, i_{2}, \ldots, i_{k},-i_{1},-i_{2}, \ldots,-i_{k}\right\}$.

It is natural to ask whether there exists a type- B analogue of Bernhart's theorem and a type- B analogue of Callan's algorithm. We give the peeling and patching algorithm which implies the symmetric distribution of the number of singleton pairs and the number of adjacency pairs for type-B partitions without a zero block. Moreover, we can transform the bijection into an involution.

2. The peeling and patching algorithm

In this section, we give a type-B analogue of Callan's symmetric distribution of singletons and adjacencies over set partitions. We find that Callan's algorithm can be extended into the type- B case. This type- B algorithm will be called the peeling and patching algorithm.

Let π be a B_{n}-partition. We call $\pm i$ a singleton pair of π if π contains a block $\{i\}$, and call $\pm(j, j+1)$ an adjacency pair of π if j and $j+1$ (modulo n) lie in the same block of π. Denote the number of singleton pairs (resp., adjacency pairs) of π by s_{π} (resp., a_{π}). For example, let $n=12$ and

$$
\begin{equation*}
\pi=\{ \pm\{1\}, \pm\{2\}, \pm\{3,11,12\}, \pm\{4,-7,9,10\}, \pm\{5,6,-8\}\} \tag{2.1}
\end{equation*}
$$

Then we have $s_{\pi}=2$ and $a_{\pi}=3$.
Denote by V_{n} the set of B_{n}-partitions without a zero block. The following theorem is the main result of this paper.
Theorem 2.1. The joint distribution of the number of singleton pairs and the number of adjacency pairs is symmetric over B_{n} partitions without a zero block. In other words, let

$$
P_{n}(x, y)=\sum_{\pi \in V_{n}} x^{s_{\pi}} y^{a_{\pi}}
$$

then we have $P_{n}(x, y)=P_{n}(y, x)$.
For example, there are three B_{2}-partitions without a zero block:

$$
\{ \pm\{1\}, \pm\{2\}\}, \quad\{ \pm\{1,2\}\}, \quad\{ \pm\{1,-2\}\}
$$

So $P_{2}(x, y)=x^{2}+y^{2}+1$. Moreover,

$$
\begin{aligned}
& P_{3}(x, y)=\left(x^{3}+y^{3}\right)+3 x y+3(x+y) \\
& P_{4}(x, y)=\left(x^{4}+y^{4}\right)+4\left(x^{2} y+x y^{2}\right)+8\left(x^{2}+y^{2}\right)+8 x y+4(x+y)+7 .
\end{aligned}
$$

Recall that Bernhart showed that the number of partitions of [n] without singletons equals the number of partitions of [n] without adjacencies. As a type- B analogue of this result, we have the following consequence of Theorem 2.1.

Corollary 2.2. The number of B_{n}-partitions containing no zero block and no singleton pairs equals the number of B_{n}-partitions containing no zero block and no adjacency pairs.

To prove Theorem 2.1, we shall construct a map $\psi: V_{n} \rightarrow V_{n}$, called the peeling and patching algorithm, such that, for any B_{n}-partition π without a zero block, $s_{\pi}=a_{\psi(\pi)}$ and $a_{\pi}=s_{\psi(\pi)}$. To describe this algorithm, we need a more general setting. Let

$$
S=\left\{ \pm t_{1}, \pm t_{2}, \ldots, \pm t_{r}\right\}
$$

be a subset of [$\pm n$], where $0<t_{1}<t_{2}<\cdots<t_{r}$. Let π be a partition of S. We call π a symmetric partition if, for any block B of $\pi,-B$ is also a block of π. Similarly, we call $\pm t_{i}$ a singleton pair of π if π contains a block $\left\{t_{i}\right\}$, and call $\pm\left(t_{j}, t_{j+1}\right)$ an adjacency pair of π if t_{j} and t_{j+1} are contained in the same block. Moreover, we identify t_{r+1} with t_{1}. We call $\pm t_{j}$ (resp., $\pm t_{j+1}$) a left-point pair (resp., right-point pair) if $\pm\left(t_{j}, t_{j+1}\right)$ is an adjacency pair. For example, for the case $r=1$, the partition $\pi=\left\{ \pm\left\{t_{1}\right\}\right\}$ contains exactly one singleton pair $\pm t_{1}$ and one adjacency pair $\pm\left(t_{1}, t_{1}\right)$.

https://daneshyari.com/en/article/4648686

Download Persian Version:

https://daneshyari.com/article/4648686

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: chen@nankai.edu.cn (W.Y.C. Chen), wgl@math.pku.edu.cn (D.G.L. Wang).

