Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Some new results on walk regular graphs which are cospectral to its complement

Mirko Lepović

Tihomira Vuksanovića 32, 34000, Kragujevac, Serbia

ARTICLE INFO

Article history: Received 2 September 2008 Received in revised form 1 September 2009 Accepted 8 September 2009 Available online 26 September 2009

Keywords: Walk regular graph Strongly regular graph Vertex-deleted subgraph Eigenvalue Main eigenvalue

1. Introduction

a b s t r a c t

We say that a regular graph *G* of order *n* and degree $r > 1$ (which is not the complete graph) is strongly regular if there exist non-negative integers τ and θ such that $|S_i \cap S_j| = \tau$ for any two adjacent vertices *i* and *j*, and $|S_i \cap S_j| = \theta$ for any two distinct non-adjacent vertices *i* and *j*, where *S^k* denotes the neighborhood of the vertex *k*. We say that a graph *G* of order *n* is walk regular if and only if its vertex deleted subgraphs $G_i = G \setminus i$ are cospectral for $i = 1, 2, ..., n$. Let *G* be a walk regular graph of order $4k + 1$ and degree $2k$ which is cospectral to its complement \overline{G} . Let H_i be switching equivalent to G_i with respect to *S*^{*i*} ⊆ *V*(*G*^{*i*}). We here prove that *G* is strongly regular if and only if $\Delta(G_i) = \Delta(H_i)$ for $i = 1, 2, \ldots, 4k + 1$, where $\Delta(G)$ is the number of triangles of a graph *G*.

© 2009 Elsevier B.V. All rights reserved.

Let *G* be a simple graph of order *n*. The spectrum of *G* consists of the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ of its (0,1) adjacency matrix $A = A(G)$ and is denoted by $\sigma(G)$. The Seidel spectrum of *G* consists of the eigenvalues $\lambda_1^* \geq \lambda_2^* \geq \cdots \geq \lambda_n^*$ of its (0, −1, 1) adjacency matrix $A^* = A^*(G)$ and is denoted by $\sigma^*(G)$. Let $P_G(\lambda) = |\lambda I - A|$ and $P_G^*(\lambda) = |\lambda I - A^*|$ denote the characteristic polynomial and the Seidel characteristic polynomial, respectively. Let

$$
P_G(\lambda) = \sum_{k=0}^n a_k \lambda^{n-k} \text{ and } P_{\overline{G}}(\lambda) = \sum_{k=0}^n \overline{a}_k \lambda^{n-k},
$$

where *G* denotes the complement of *G*. We know that $a_0 = 1$, $a_1 = 0$, $a_2 = -e$ and $a_3 = -2\Delta$, where $e = e(G)$ and ∆ = ∆(*G*) is the number of edges and the number of triangles of the graph *G*.

Let $A^k=[a_{ij}^{(k)}]$ for any non-negative integer $k.$ The number W_k of all walks of length k in G equals $\bf sum\,}A^k$, where $\bf sum\,}M$ is the sum of all elements in a matrix *M*. According to [\[1\]](#page--1-0), the generating function $W_G(t)$ of the numbers W_k of length *k* in the graph *G* is defined by $W_G(t) = \sum_{k=0}^{+\infty} W_k t^k$. Besides [\[1\]](#page--1-0),

$$
W_G(t) = \frac{1}{t} \left[\frac{(-1)^n P_{\overline{G}}\left(-\frac{t+1}{t}\right)}{P_G\left(\frac{1}{t}\right)} - 1 \right].
$$
\n(1)

Similarly, the function $W^*_G(t)=\sum_{k=0}^{+\infty}W^*_kt^k$ is called the Seidel generating function [\[5\]](#page--1-1), where $W^*_k=\operatorname{sum}(A^*)^k$. Further, we say that an eigenvalue μ of G is main if and only if $\langle \mathbf{j}, \mathbf{Pj} \rangle = n \cos^2 \alpha > 0$, where **j** is the main vector (with coordinates

E-mail address: [lepovic@knez.uis.kg.ac.yu.](mailto:lepovic@knez.uis.kg.ac.yu)

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter © 2009 Elsevier B.V. All rights reserved. [doi:10.1016/j.disc.2009.09.011](http://dx.doi.org/10.1016/j.disc.2009.09.011)

equal to 1) and **P** is the orthogonal projection of the space \mathbb{R}^n onto the eigenspace $\mathcal{E}_A(\mu)$. The quantity $\beta = |\cos \alpha|$ is called the main angle of μ . Since $W_k = \langle A^m \mathbf{j}, A^{k-m} \mathbf{j} \rangle$ we find that

$$
W_k = W_{1,m} W_{1,k-m} + W_{2,m} W_{2,k-m} + \dots + W_{n,m} W_{n,k-m},
$$
\n(2)

where $W_{i,k}$ is the number of all walks of length *k* that starts from the vertex *i*. In particular, using [\(2\)](#page-1-0) we obtain (i) $W_0 = n$; (ii) $W_1 = \sum_{i=1}^n d_i$; (iii) $W_2 = \sum_{i=1}^n d_i^2$ and (iv) $W_3 = \sum_{(i,j)\in E} d_i d_j$ where $d_i = d_i(G)$ denotes the degree of the vertex *i* in G and $E = E(G)$ is the edge set of *G*. Finally, using [\(1\)](#page-0-0) we get

$$
\sum_{i=0}^{k} (-1)^{i} \binom{n-i}{k-i} \overline{a}_{i} = a_{k} + \sum_{i=0}^{k-1} a_{k-1-i} W_{i}, \tag{3}
$$

for any non-negative integer k. We say that $\mu^* \in \sigma^*(G)$ is the Seidel main eigenvalue if and only if $\langle j, P^*j \rangle = n \cos^2 \gamma > 0$, where P^* is the orthogonal projection of the space \mathbb{R}^n onto the eigenspace $\mathcal{E}_{A^*}(\mu^*)$. The quantity $\beta^* = |\cos \gamma|$ is called the Seidel main angle of μ^* . Using the spectral decomposition of A^* , we find that

$$
W_G^*\left(\frac{1}{\lambda}\right) = \frac{n_1^*\lambda}{\lambda - \mu_1^*} + \frac{n_2^*\lambda}{\lambda - \mu_2^*} + \dots + \frac{n_k^*\lambda}{\lambda - \mu_k^*},\tag{4}
$$

where $n_i^* = n(\beta_i^*)^2$ and $n_1^* + n_2^* + \cdots + n_k^* = n$, understanding that β_i^* is the Seidel main angle of μ_i^* . Of course, for any $\lambda^* \in \sigma^*(G)$ we have $-\lambda^* \in \sigma^*(\overline{G})$. Since $\varepsilon_{A^*}(\lambda^*) = \varepsilon_{\overline{A}^*}(-\lambda^*)$, we obtain that $\mathcal{M}^*(\overline{G}) = -\mathcal{M}^*(G)$, where $-\mathcal{M}^*(G) = {\lambda^* \mid -\lambda^* \in \mathcal{M}^*(G)}$. Therefore, according to [\(4\),](#page-1-1) we get

$$
W_{\overline{G}}^*\left(\frac{1}{\lambda}\right) = \frac{n_1^*\lambda}{\lambda + \mu_1^*} + \frac{n_2^*\lambda}{\lambda + \mu_2^*} + \dots + \frac{n_k^*\lambda}{\lambda + \mu_k^*}.
$$
\n⁽⁵⁾

Next, the Seidel spectrum of a graph *G* which is cospectral to its complement \overline{G} is symmetric with respect to the zero point. Since, in this case, $W_G^*(t) = W_{\overline{G}}^*(t)$ it follows that the Seidel main spectrum of *G* is also symmetric with respect to the zero point. Consequently, according to [\(4\)](#page-1-1) and [\(5\),](#page-1-2) we note if μ^*_+ , $\mu^*_- \in \mathcal{M}^*(G)$ then $n^*_+ = n^*_-$, where $n^*_+ = n(\beta^*_+)^2$ and $n_{-}^{*} = n(\beta_{-}^{*})^2$ are related to μ_{+}^{*} and $\mu_{-}^{*} = -\mu_{+}^{*}$, respectively.

Remark 1. Let $\mathcal{M}(G)$ be the set of all main eigenvalues of G. Then we have $|\mathcal{M}(G)| = |\mathcal{M}(G)|$ and $|\mathcal{M}(G)| = |\mathcal{M}^*(G)|$, where M[∗] (*G*) denotes the set of all Seidel main eigenvalues of *G*.

2. Some preliminary results

Let *i* be a fixed vertex from the vertex set $V(G) = \{1, 2, ..., n\}$ and let $G_i = G \setminus i$ be its corresponding vertex deleted subgraph. Let *Sⁱ* denote the neighborhood of *i*, defined as the set of all vertices of *G* which are adjacent to *i*. Besides, let $\Delta_i = \sum_{j \in S_i} d_j$.

Proposition 1 (*Lepović [\[7\]](#page--1-2)*). *Let G be a connected or disconnected graph of order n. Then, for any vertex deleted subgraph Gⁱ we have:*

(1⁰) $\Delta_j(G_i) = \Delta_j(G) - d_i(G) - a_{ij}^{(2)}(G)$ if $j \in S_i$; (2^0) $\Delta_j(G_i) = \Delta_j(G) - a_{ij}^{(2)}(G)$ *if* $j \in T_i = V(G_i) \setminus S_i$.

We say that a regular graph *G* of order *n* and degree *r* ≥ 1 is strongly regular if there exist non-negative integers τ and θ such that $|S_i \cap S_j| = \tau$ for any two adjacent vertices *i* and *j*, and $|S_i \cap S_j| = \theta$ for any two distinct non-adjacent vertices *i* and *j*, understanding that *G* is not the complete graph *Kn*. We know that a regular connected graph is strongly regular if and only if it has exactly three distinct eigenvalues [\[2\]](#page--1-3).

Theorem 1 (*Lepović* [\[7\]](#page--1-2)). A regular graph G of order n and degree $r \geq 1$ is strongly regular if and only if its vertex deleted *subgraphs G_i have exactly two main eigenvalues for* $i = 1, 2, \ldots, n$ *.*

Theorem 2 (*Lepović [\[7\]](#page--1-2)*). *Let G be a connected or disconnected strongly regular graph of order n and degree r. Then for any vertex deleted subgraph Gⁱ we have*

$$
\mu_{1,2}=\frac{\tau-\theta+r\pm\sqrt{\left(\tau-\theta-r\right)^2-4\theta}}{2},\,
$$

where μ_1 and μ_2 are the main eigenvalues of G_i .

Download English Version:

<https://daneshyari.com/en/article/4648713>

Download Persian Version:

<https://daneshyari.com/article/4648713>

[Daneshyari.com](https://daneshyari.com)