ELSEVIER

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Scattering matrices of regular coverings of graphs

Hirobumi Mizuno^a, Iwao Sato^{b,*}

ARTICLE INFO

Article history:
Received 24 May 2008
Received in revised form 3 September 2009
Accepted 8 September 2009
Available online 24 September 2009

Keywords: Laplacian matrix Scattering matrix Graph covering L-function

ABSTRACT

We give a decomposition formula for the determinant on the bond scattering matrix of a regular covering of *G*. Furthermore, we define an *L*-function of *G*, and give a determinant expression of it. As a corollary, we express the determinant on the bond scattering matrix of a regular covering of *G* by means of its *L*-functions.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Graphs treated here are finite. Let G be a connected graph (possibly with multiple edges and loops) with the set V(G) of vertices and the set E(G) of unoriented edges. We write uv for an edge joining two vertices u and v. For $uv \in E(G)$, an arc (u, v) is the oriented edge from u to v. Set $D(G) = \{(u, v), (v, u) \mid uv \in E(G)\}$. For $e = (u, v) \in D(G)$, set u = o(e) and v = t(e). Furthermore, let $e^{-1} = (v, u)$ be the *inverse* arc of e = (u, v).

A path P of length n in G is a sequence $P:(v_0,e_1,v_1,e_2,v_2,\ldots,v_{n-1},e_n,v_n)$ of n+1 vertices and n arcs such that $v_0\in V(G), v_i\in V(G), e_i\in D(G)$ and $e_i=(v_{i-1},v_i)$ for $1\leq i\leq n$. We write $P=(e_1,\ldots,e_n)$. Set |P|=n, $o(P)=v_0$ and $t(P)=v_n$. Also, P is called an (o(P),t(P))-path. We say that a path $P=(e_1,\ldots,e_n)$ has a backtracking if $e_{i+1}^{-1}=e_i$ for some i. A (v,w)-path is called a v-cycle (or v-closed path) if v=w. The inverse cycle of a cycle $C=(e_1,\ldots,e_n)$ is the cycle $C^{-1}=(e_n^{-1},\ldots,e_n^{-1})$. As standard terminologies of graph theory, a path and a cycle are a diwalk and a closed diwalk, respectively.

We introduce an equivalence relation on the set of cycles. Two cycles $C_1 = (e_1, \ldots, e_m)$ and $C_2 = (f_1, \ldots, f_m)$ are equivalent if there exists k such that $f_j = e_{j+k}$ for all j. The inverse cycle of C is in general not equivalent to C. Let C be the equivalence class that contains a cycle C. Let C be the cycle obtained by going C times around a cycle C. Such a cycle is called a power of C and C have no backtracking. Furthermore, a cycle C is prime if it is not a power of a strictly smaller cycle. Note that each equivalence class of prime, reduced cycles of a graph C corresponds to a unique conjugacy class of the fundamental group C of C at a vertex C of C.

The *Ihara zeta function* of a graph G is defined to be a function of $u \in \mathbf{C}$ with |u| sufficiently small, by

$$\mathbf{Z}(G, u) = \mathbf{Z}_G(u) = \prod_{[C]} (1 - u^{|C|})^{-1},$$

where [C] runs over all equivalence classes of prime, reduced cycles of G (see [9]).

^a Iond University, Tokyo, Japan

^b Oyama National College of Technology, Oyama, Tochigi 323–0806, Japan

^{*} Corresponding author. Tel.: +81 285 20 2176; fax: +81 285 20 2880. E-mail address: isato@oyama-ct.ac.jp (I. Sato).

Zeta functions of graphs were originally defined for regular graphs by Ihara [9]. In [9], he showed that their reciprocals are explicit polynomials. A zeta function of a regular graph *G* associated with a unitary representation of the fundamental group of *G* was developed by Sunada [15,16]. Hashimoto [8] treated multivariable zeta functions of bipartite graphs. Bass [2] generalized Ihara's result on the zeta function of a regular graph to an irregular graph and showed that its reciprocal is again a polynomial.

Theorem 1 (Bass). If G is a connected graph, then the reciprocal of the zeta function of G is given by

$$\mathbf{Z}(G, u)^{-1} = (1 - u^2)^{r-1} \det(\mathbf{I} - u\mathbf{A}(G) + u^2(\mathbf{D} - \mathbf{I})),$$

where r and $\mathbf{A}(G)$ are the Betti number and the adjacency matrix of G, respectively, and $\mathbf{D} = \mathbf{D}_G = (d_{ij})$ is the diagonal matrix with $d_{ii} = \deg v_i$ where $V(G) = \{v_1, \dots, v_p\}$.

Stark and Terras [14] gave an elementary proof of Theorem 1 and discussed three different zeta functions of any graph. Other proofs of Bass' Theorem were given by Foata and Zeilberger [5] and Kotani and Sunada [10].

The spectral determinant of the Laplacian on a quantum graph is closely related to the Ihara zeta function of a graph (see [3,4,7,13]).

Smilansky [13] considered spectral zeta functions and trace formulas for (discrete) Laplacians on ordinary graphs and expressed the determinant on the bond scattering matrix of a graph G by using the characteristic polynomial of its Laplacian.

Let *G* be a connected graph with $V(G) = \{v_1, \dots, v_p\}$ and $D(G) = \{e_1, \dots, e_q, e_1^{-1}, \dots, e_q^{-1}\}$. The Laplacian (matrix) $\mathbf{L} = \mathbf{L}(G)$ of *G* is defined by

$$\mathbf{L} = -\mathbf{A}(G) + \mathbf{D}.$$

Let λ be a eigenvalue of **L**, and let $\phi = (\phi_1, \dots, \phi_p)$ be the eigenvector corresponding to λ . For each arc $b = (v_j, v_l)$, one associates a *bond wave function*

$$\phi_h(x) = a_h e^{i\pi x/4} + a_{h-1} e^{-i\pi x/4}, \quad x = \pm 1, i = \sqrt{-1}$$

under the condition

$$\phi_b(1) = \phi_i$$
 and $\phi_b(-1) = \phi_l$.

We consider the following three conditions:

- 1. *uniqueness*: The value ϕ_j of the eigenvector at the vertex v_j computed in the terms of the bond wave functions, is the same for all the arcs emanating from v_i .
- 2. ϕ is an eigenvector of **L**;
- 3. *consistency*: The linear relation between the incoming and the outgoing coefficients must be satisfied simultaneously at all vertices.

By uniqueness, we have

$$a_{b_1}e^{i\pi/4} + a_{b_1^{-1}}e^{-i\pi/4} = a_{b_2}e^{i\pi/4} + a_{b_2^{-1}}e^{-i\pi/4} = \dots = a_{bd_j}e^{i\pi/4} + a_{b_{d_i}^{-1}}e^{-i\pi/4},$$

where $b_1, b_2, \ldots, b_{d_i}$ are arcs emanating from v_i , and $d_i = \deg v_i$.

By condition 2, we have

$$-\sum_{k=1}^{d_j}(a_{b_k}e^{-i\pi/4}+a_{b_k^{-1}}e^{i\pi/4})=(\lambda-d_j)\frac{1}{d_j}\sum_{k=1}^{d_j}(a_{b_k}e^{i\pi/4}+a_{b_k^{-1}}e^{-i\pi/4}).$$

Thus, for each arc b with $o(b) = v_i$,

$$a_b = \sum_{t(c)=v_j} \sigma_{bc}^{v_j}(\lambda) a_c, \tag{1}$$

where

$$\sigma_{bc}^{v_j}(\lambda) = \mathrm{i}\left(\delta_{b^{-1}c} - \frac{2}{d_j} \frac{1}{1 - \mathrm{i}(1 - \lambda/d_j)}\right)$$

and $\delta_{b^{-1}c}$ is the Kronecker delta. The bond scattering matrix $\mathbf{U}(\lambda) = (U_{ef})_{e,f \in D(G)}$ of G is defined by

$$U_{ef} = \begin{cases} \sigma_{ef}^{t(f)} & \text{if } t(f) = o(e), \\ 0 & \text{otherwise.} \end{cases}$$

By consistency, we have

$$\mathbf{U}(\lambda)\mathbf{a} = \mathbf{a}$$
.

where $\mathbf{a} = {}^{t}(a_1, a_2, \dots, a_{2a})$. This holds if and only if

$$\det(\mathbf{I}_{2q} - \mathbf{U}(\lambda)) = 0.$$

Download English Version:

https://daneshyari.com/en/article/4648715

Download Persian Version:

https://daneshyari.com/article/4648715

<u>Daneshyari.com</u>