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a b s t r a c t

Thomassen and Vella (Graph-like continua, augmenting arcs, and Menger’s Theorem,
Combinatorica, doi:10.1007/s00493-008-2342-9) have recently introduced the notion of
a graph-like space, simultaneously generalizing infinite graphs and many of the compact
spaces recently used by Diestel or Richter (and their coauthors) to study cycle spaces and
related problems in infinite graphs. This work is a survey to introduce graph-like spaces
and shows how many of these works on compact spaces can be generalized to compact
graph-like spaces.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In an on-going project, Diestel and his students have been studying compact topological spaces associated with certain
infinite graphs, especially locally finite ones. This study has proved fruitful for generalizing many theorems about finite
graphs to the infinite context; an essential point is that cycles are generalized to include infinite cycles. This has necessitated
an inherently topological point of view: a cycle is now an embedding of a circle into the compact space. Particular examples
of such works are [2–4,8].

The original motivation for some of these questions arose from Bonnington and Richter [1], who proved that the cycle
space of a locally finite planar graph is generated by the face boundaries of a planar embedding, together with certain 2-way
infinite paths joining the different accumulation points. However, the definition of cycle space here is different from that
employed by Diestel. In the next section, we shall give a unified definition of cycle space; this section is devoted to providing
historical context.

Motivated in part by a desire to unify the two definitions, Vella and Richter [23] introduced the notion of edge space and
showed that the two notions of cycle space above are both instances of the cycle space of a compact edge space. The only
difference is the embedding of the graph into a larger compact space. For locally finite graphs, Diestel uses the Freudenthal
compactification, while Bonnington and Richter use the 1-point compactification.

However, edge spaces ignore many inherently graph-theoretic properties. Its name was chosen to reflect the emphasis
on edges rather than vertices. Continuing this line of reasoning, Vella introduced the notion of graph-like space (appearing
for the first time in [22]), which is the main focus of this introductory article.

A graph-like space is ametric space X with a 0-dimensional subspace V – the set of vertices – of X so that every component
of X − V is an open subset of X homeomorphic to an open arc and whose closure in X has only one or two additional points
— these components of X − V are the edges. (The meaning of 0-dimensional is: for any two points u, w ∈ V , there is a
separation (U,W ) of V so that u ∈ U and w ∈ W . In particular, V is totally disconnected. If X is compact, then so is V and
then totally disconnected is equivalent to being 0-dimensional.)
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Fig. 1. 2-way infinite ladder plus an edge joining its ends.

From this definition, we see that any graph G is a graph-like space. (Give G the usual topology of a 1-dimensional cell
complex; in this case, every subset of V (G) is open in V (G), so V (G) has the discrete topology.) But many other topological
spaces are graph-like: the Freudenthal and 1-point compactifications of an infinite, locally finite graph are also graph-like.
Note that the added ‘‘points-at-infinity’’ are vertices of the graph-like space. Wewill be principally concerned with compact
graph-like spaces.

In their more general results, Diestel et al. work with infinite graphs in which every two vertices are separated by
some finite edge cut. For such a graph G, an identification space G obtained from the Freudenthal compactification of G
is considered; it is known thatG is another example of a compact graph-like space [23].

With the realization that the two notions of cycle space come from different compactifications of the same locally
finite graph, suddenly a much broader landscape appears before us. Although the two compactifications considered above
are the most natural, it is apparent that many others are possible. Moreover, one’s horizons are no longer limited to
compactifications of graphs. For example, in Fig. 1 we see the 2-way infinite ladder, plus its two ends, plus an edge joining
the two ends. This is a compact graph-like space. Another compact graph-like space can be obtained from the 1-point
compactification of the 2-way infinite path by joining the limit point to every vertex of the path.

The graph in the figure hasmany infinite cycles; for example, the two facial cycles bounding the infinite and the innermost
faces both go through the edge containing the ends of the 2-way infinite ladder. Another feature of this space is that it is
3-connected (deleting any two vertices and their incident edges does not result in a disconnected subspace), whereas the
2-way infinite ladder by itself is not 3-connected (neither is its Freudenthal compactification).

Thomassen and Vella [22] proved that:

1. if H is a closed subspace of a compact graph-like space, then H is a graph-like space;
2. a compact graph-like space is locally connected; and
3. graph-like spaces satisfy Menger’s Theorem: if k is a non-negative integer and u, v are vertices of G, then either there are

k + 1 internally disjoint uv-arcs in G, or there is a set S of k points, different from u and v, so that G − S has no uv-arc.

The relevance of the first two (each given a relatively short proof in [22]) is that every closed connected subspace of a
compact graph-like space is arcwise connected. For the Freudenthal compactification, or more generally for the space G,
Diestel and Kühn gave a difficult proof [8].

Many cycle-based theorems about finite graphs extend to compact graph-like spaces. This is, however, not the most
interesting possibility. Mirroring Thomas’ work in infinite graphs [17], many aspects of the Graph Minors Project of
Robertson and Seymour ‘‘lift’’ to graph-like spaces. We will have more to say on this point later in this work.

Furthermore, there is small, but increasing, evidence, that results can be proved for quite general topological spaces.
Three examples, all related to planarity of compact, locally connected metric spaces, are [13,15,20]. In the discussion on
embedding graph-like spaces into surfaces, we will point out one example of a theorem that we have proved for graph-
like spaces that might hold for compact, locally connected metric spaces, but has not yet been proven in that more general
context.

2. From finite graphs to compact graph-like spaces

In this section, we review some basic matters concerning cycle spaces and embeddings in surfaces of compact graph-like
spaces. These results show that in many basic respects, graph-like spaces have the same properties as graphs.

We denote by 2E the set of all subsets of edges of the compact graph-like space G. A subset A of 2E is thin if every edge
is in only finitely many members of A. In the case A is thin, the thin sum of A is the set

∑
a∈A a of edges that are in an odd

number of elements of A. For a subset A of 2E , the subspace generated by A is the smallest subset of 2E containing A and closed
under thin sums. It is an easy consequence of Zorn’s Lemma that every subset of 2E generates a unique subspace.
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