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a b s t r a c t

Wediscuss two combinatorial problems concerning classes of finite or countable structures
of combinatorial type. We consider classes determined by a finite set of finite constraints
(forbidden substructures). Questions about such classes of structures are naturally viewed
as algorithmic decision problems, taking the finite set of constraints as the input.While the
two problemswe consider have been studied in a number of natural contexts, it remains far
from clear whether they are decidable in their general form. This broad question leads to a
number of more concrete problems. We discuss twelve open problems of varying levels of
concreteness, and we point to the ‘‘Hairy Ball Problem’’ as a particularly concrete problem,
which we give first in direct model theoretic terms, and then decoded as an explicit graph
theoretic problem.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Dichotomies for combinatorial structures

We will discuss two problems which concern classes of combinatorial structures—in the first case finite structures, and
in the second case countably infinite ones. The classes we consider are defined by finitely many constraints provided by
‘‘forbidden substructures’’.1 Influenced by logic—complexity theory on the one hand, model theory on the other—we tend
to put these problems in a very broad context, but open questions abound at all levels. A considerable body of concrete work
has been undertaken on both problems in a number of contexts, but there is a great deal of similar territory remaining largely
unexplored. Our survey includes some new results that we find clarifying. We have put most of the detailed discussion of
the new results in three Appendices, referring to them as needed in the text, with an indication of the line of argument. This
includes some results to the effect that ‘‘Here there be tygers’’, which are intended to justify some of the restrictions we
impose.

One of the aims of general model theory has been to prove a dichotomy for the behavior of the most general classes of
structures: the so-called ‘‘structure/nonstructure’’ alternative, in Shelah’s parlance. According to this dichotomy, when one
looks at large infinite models of first order theories, one either has a coherent structure theory which in the first instance
allows one to estimate the number of models, and to proceed from there to more delicate results, or on the other hand
one finds a degree of chaos which can be expressed in a number of ways, the essential point being that the behavior of the
models in the nonstructured case is more a matter of set theory than of algebraic structure.

Are there any similar phenomena in the world of finite (or nearly finite) combinatorics? We will confine ourselves to
classes of structures with very simple definitions, namely with classes defined by finitely many constraints of the simplest
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kind: forbidden substructures. We consider notions of ‘‘tameness’’ and ‘‘wildness’’ appropriate to this context, and we
undertake to analyze the gap between the tame and the wild.

The two notions of tameness with which we will work are the following: first, well-quasi-order; second, the existence
of a countable universal object. If we followed the pattern of model theory exactly, we would be looking to show that the
wild case is extremely wild in some sense; in the first of our two cases we doubt this, and in the second case, while it seems
to be true, it is not really the point. For us, the natural question at this level is whether the separation between the tame
and wild cases is effective (algorithmically decidable). Indeed, that is simply a precise way of stating that the two cases can
be clearly separated. For our two interpretations of tameness—and no doubt, many others—it is completely unclear at this
stagewhether such a separation occurs. All one can really say to date is that when oneworks on instances of these problems,
they seem difficult, and not entirely unlike some known undecidable problems.

Let us take up these two problems one at a time.

1.2. The WQO problem

Here we deal with the class Q of all finite structures of a particular combinatorial type. This may be the class of (finite)
graphs, tournaments, digraphs, permutation patterns, matroids, and such. We take a finite subset C of Q, the forbidden
substructures, and consider the subclass QC of structures in Q containing no substructure isomorphic to any C in C. A note
on terminology: we use the term ‘‘substructure’’ here in much the same way that graph theorists use the term ‘‘subgraph;’’
and this is not consistent with standard model theoretic terminology. See Note 2, Section 4.3 for more on this point, and
also Section 1.6 and Appendix C.

AsQ is not actually a set, onemay prefer to cut it downby taking all structures under consideration to have their elements
in a fixed countable set; or indeed byworkingwith isomorphism types rather than structures.Wewill not concern ourselves
with the choice of formalism.

The relation that interests us here is the embeddability relation on Q : a ≤ b if a is isomorphic with a substructure of
b. Then Q is a quasi-order, and the equivalence relation given by a ≤ b ≤ a is the relation of isomorphism. All of these
quasi-orders are well-founded, that is there is no infinite strictly descending sequence a1 > a2 > · · ·.

In general, a quasi-order is said to bewell-quasi-ordered (wqo) if it is bothwell-founded and contains no infinite antichain
(i.e., set of pairwise incomparable elements). The problem we wish to consider—in its first formulation—is the following.

Problem (A).With Q and C specified, is QC wqo? In other words, does QC contain an infinite antichain?

We consider some illustrative examples.

Fact 1.1.
1. Let L be a finite linear tournament. Then the L-free tournaments are wqo (in fact of bounded size, by Ramsey’s theorem) . . . .
2. But if T is a nonlinear tournament, with at least 7 vertices, then the T-free tournaments are not wqo (by [29], because of two

very special antichains serving to witness this in all cases).

This gives the following corollary.

Corollary 1.2. The finite tournaments T for which the class of T -free tournaments is wqo can be recognized in polynomial time.

Results of this kind often have a paradoxical quality: Fact 1.1 does not actually tell us how to determine which side of the
fence a particular constraint T will actually fall, if T is nonlinear and very small, nor does it give us any hint as to how one
should find out in such cases. But once the number of cases left unsettled is finite, and the others are cleanly handled, the
problembecomes polynomial time decidable. At the same time, it is precisely the finitelymany cases left over that tend to be
the real challenges in practice, and in the present instance it took extensive structural analyses of the classes QT associated
with two of these ‘‘left over’’ tournaments T , and then an application of Kruskal’s tree theorem [27], to convert this abstract
statement into a definite answer.

Thus a proof that a problem is solvable is not at all the same thing as a solution, and the distinction is worth bearing in
mind. But we find the question, whether such combinatorial problems are solvable in principle at a systematic level, to be
one with its own interest.

At the level of generality of the problems we consider, algorithmic decidability per se is the natural question. But one
curious feature of the wqo problem is that decidability results are obtained by noneffective methods, and that the resulting
algorithms whose existence is proved are ‘‘good’’ in the conventional sense of polynomial time computability, even though
no single correct algorithm is produced, and for thatmatter in certain cases no explicit bound on the degree of the associated
polynomial can be extracted from the decidability proof. This is not a new phenomenon; it comes with the general territory
of wqo theory [16, Section 8].

We restate our problem in the form that actually concerns us.

Problem (AQ). With Q fixed, for example the class of finite tournaments, and with C varying, is Problem A effectively
solvable (and if so, in polynomial time)? That is the function taking us from the specification ofC to the answer, a computable
function?



Download	English	Version:

https://daneshyari.com/en/article/4648784

Download	Persian	Version:

https://daneshyari.com/article/4648784

Daneshyari.com

https://daneshyari.com/en/article/4648784
https://daneshyari.com/article/4648784
https://daneshyari.com/

