

Contents lists available at ScienceDirect

### Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc



# Blockers and transversals in some subclasses of bipartite graphs: When caterpillars are dancing on a grid

B. Ries<sup>b</sup>, C. Bentz<sup>e</sup>, C. Picouleau<sup>c</sup>, D. de Werra<sup>d</sup>, M.-C. Costa<sup>f</sup>, R. Zenklusen<sup>a</sup>

- $^{\rm a}$  ETHZ, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
- <sup>b</sup> Columbia University, New York, USA
- <sup>c</sup> CNAM, Laboratoire CEDRIC, Paris, France
- <sup>d</sup> EPFL, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- e Université Paris-Sud, LRI, Orsay, France
- f ENSTA, UMA-CEDRIC, Paris, France

#### ARTICLE INFO

Article history:
Received 18 April 2009
Received in revised form 6 August 2009
Accepted 13 August 2009
Available online 18 September 2009

Keywords: Transversal Blocker Matching Grid graph Tree Caterpillar

#### ABSTRACT

Given an undirected graph G=(V,E) with matching number  $\nu(G)$ , a d-blocker is a subset of edges B such that  $\nu((V,E\setminus B))\leq \nu(G)-d$  and a d-transversal T is a subset of edges such that every maximum matching M has  $|M\cap T|\geq d$ . While the associated decision problem is NP-complete in bipartite graphs we show how to construct efficiently minimum d-transversals and minimum d-blockers in the special cases where G is a grid graph or a tree

© 2009 Elsevier B.V. All rights reserved.

#### 1. Introduction

Given a collection  $\mathcal{C}$  of subsets of a ground set  $\mathcal{E}$  we define a transversal as a subset of  $\mathcal{E}$  which meets every member of  $\mathcal{C}$ . Transversals have an interest for themselves but also for their numerous applications (for instance surveying when  $\mathcal{C}$  is a collection of paths from the origin to destination in a graph). Such sets have been extensively studied for various collections  $\mathcal{C}$  (see for instance [3] and the chapter 22 in [7]).

A family of problems which follows a similar spirit to transversal problems are the class of edge deletion problems [1,4,6,8]. In [10] a generalization of transversals called (*d*-transversals) and a closely related edge deletion problem (*d*-blockers) were introduced for matchings; complexity results have been derived and some polynomially solvable cases have been presented.

For general bipartite graphs finding minimum *d*-blockers or *d*-transversals is *NP*-hard [10]. Our purpose in this paper is to show how minimum *d*-transversals and minimum *d*-blockers can be constructed in some specific subclasses of bipartite graphs: the grid graphs and the trees. For trees, the algorithms to be presented will essentially be based on dynamic programming. For grid graphs the technique will be different: the structural simplicity of such graphs will allow us to construct directly *d*-blockers and *d*-transversals. Most of the effort will then be spent to show that no smaller subset of

*E-mail addresses*: br2275@columbia.edu (B. Ries), bentz@lri.fr (C. Bentz), chp@cnam.fr (C. Picouleau), dominique.dewerra@epfl.ch (D. de Werra), marie-christine.costa@ensta.fr (M.-C. Costa), rico.zenklusen@ifor.math.ethz.ch (R. Zenklusen).

edges can be a d-blocker or d-transversal. Depending on the parity of parameters m and n describing the size of the grid graphs, various proof techniques (bounding procedures) will be necessary.

In Section 2, we will recall the basic definitions of *d*-blocker and *d*-transversal as well as some results of [10]; then we will introduce specific notations for grid graphs. In Section 3 we will state and prove the formulas giving the sizes of minimum *d*-transversals in grid graphs. Section 4 will study minimum *d*-blockers in grid graphs. Section 5 will be dedicated to the case of trees (minimum *d*-transversals and minimum *d*-blockers) and conclusions will follow in Section 6.

#### 2. Definitions and previous results

All graph theoretical terms not defined here can be found in [2]. Throughout this paper we are concerned with undirected simple loopless graphs G = (V, E). A **matching** M is a set of pairwise non-adjacent edges. A matching M is called **maximum** if its cardinality |M| is maximum. The largest cardinality of a matching in G, its **matching number**, will be denoted by V(G). Let  $P_0(G) = \{[v, w] \in E \mid \forall \text{ maximum matching } M, [v, w] \notin M\}$  and  $P_1(G) = \{[v, w] \in E \mid \forall \text{ maximum matching } M, [v, w] \in M\}$ . A vertex  $v \in V$  is called **saturated by a matching** M if there exists an edge  $[v, w] \in M$ . A vertex  $v \in V$  is called **strongly saturated** if for all maximum matchings M, v is saturated by M. We denote by S(G) the set of strongly saturated vertices of a graph G. We will be interested in subsets of edges which will intersect maximum matchings in G or whose removal will reduce the matching number by a given number.

We shall say that a subset  $T \subseteq E$  is a *d***-transversal** of *G* if for every maximum matching *M* we have  $|M \cap T| \ge d$ . Thus a *d*-transversal is a subset of edges which intersect each maximum matching in at least *d* edges.

A subset  $B \subseteq E$  will be called a *d***-blocker** of G if  $\nu(G') \le \nu(G) - d$  where G' is the partial graph  $G' = (V, E \setminus B)$ . So B is a subset of edges whose removal reduces the cardinality of a maximum matching by at least d.

In case where d = 1, a d-transversal or a d-blocker is called a **transversal** or a **blocker**, respectively. We remark that in this case our definition of a transversal coincides with the definition of a transversal in the hypergraph of maximum matchings of G.

We denote by  $\beta_d(G)$  the minimum cardinality of a d-blocker in G and by  $\tau_d(G)$  the minimum cardinality of a d-transversal in  $G(\beta(G))$  and  $\sigma(G)$  in case of a blocker or a transversal). A d-blocker (resp. d-transversal) will be minimum if it is of minimum size.

Let v be a vertex in graph G. The **bundle** of v, denoted by  $\omega(v)$ , is the set of edges which are incident to v. So  $|\omega(v)| = d(v)$  is the degree of v. As we will see, bundles play an important role in finding d-transversals and d-blockers.

A **grid graph** (or shortly a **grid**)  $G_{m,n} = (V, E)$  is constructed on vertices  $x_{ij}$ ,  $1 \le i \le m$ ,  $1 \le j \le n$ ; its edge set consists of horizontal edges  $h_{ij} = [x_{ij}, x_{i,j+1}]$ ,  $1 \le j \le n-1$  in each row  $i, 1 \le i \le m$ , and of vertical edges  $v_{ij} = [x_{ij}, x_{i+1,j}]$ ,  $1 \le i \le m-1$ , in each column  $j, 1 \le j \le n$ .

Notice that  $G_{m,n}$  is a bipartite graph; let  $\mathcal{B}$ , w be the associated partition of its vertex set. When mn is even,  $|\mathcal{B}| = |\mathcal{W}| = \frac{mn}{2}$  and the maximum matchings are perfect (all vertices are saturated), i.e.  $\nu(G_{m,n}) = \frac{mn}{2}$ . When mn is odd, assuming that the four corners (vertices of degree 2) are in  $\mathcal{B}$ , we have  $|\mathcal{B}| = \frac{mn+1}{2}$  and  $|\mathcal{W}| = \frac{mn-1}{2}$ , so  $|\mathcal{B}| = |\mathcal{W}| + 1$ ; every maximum matching will saturate all vertices but one, i.e.  $\nu(G_{m,n}) = \lfloor \frac{mn}{2} \rfloor$ . Moreover for every vertex v in  $\mathcal{B}h$ , there is a maximum matching saturating all vertices except v.

We give some properties and results concerning d-transversals and d-blockers (see [10] for their proofs).

**Property 2.1.** In any graph G and for any d > 1, a d-blocker B is a d-transversal.

**Property 2.2.** In any graph G = (V, E) a set T is a transversal if and only if it is a blocker.

**Property 2.3.** For any independent set  $\{v_1, v_2, \dots, v_d\} \subseteq S(G)$  the set  $T = \bigcup_{i=1}^d \omega(v_i)$  is a d-transversal.

For the special case of  $G_{1,n}$ , a grid graph with a unique row, we have the following.

**Property 2.4.** Let  $G_{1,n}$  be a chain on n vertices  $v_1, v_2, \ldots, v_n$  (i.e.,  $E = \{[v_i, v_{i+1}] | i = 1, \ldots, n-1\}$ ) and  $d \ge 1$  an integer. Then

- $\beta_d(G) = 2d 1$  and  $\tau_d(G) = d$  if n is even,
- $\beta_d(G) = \tau_d(G) = 2d$  if n is odd.

One can observe from the previous property that for the case where n is even and d>1 we have  $\tau_d(G)<\beta_d(G)$ : so a d-transversal is not necessarily a d-blocker (i.e. the converse of Property 2.1 is not necessarily true).

In case where *G* is bipartite:

**Theorem 2.1.** For every fixed  $d \in \{1, 2, ..., \nu(G)\}$  finding a minimum d-blocker or a minimum d-transversal is  $\mathcal{NP}$ -hard even if G is bipartite.

#### 3. Minimum *d*-transversal in grid graphs

We show here how to construct a minimum d-transversal in a grid graph  $G_{m,n}$ . In the case where mn is even, the d-transversals constructed will generally consist of d bundles whose centers form a stable set. In some cases other constructions will be needed.

## Download English Version:

# https://daneshyari.com/en/article/4648861

Download Persian Version:

https://daneshyari.com/article/4648861

<u>Daneshyari.com</u>