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a b s t r a c t

A graph G is said to have property P(2, k) if given any k+2 distinct vertices a, b, v1, . . . , vk,
there is a path P in G joining a and b and passing through all of v1, . . . , vk. A graph G is
said to have property C(k) if given any k distinct vertices v1, . . . , vk, there is a cycle C in
G containing all of v1, . . . , vk. It is shown that if a 4-connected graph G is embedded in an
orientable surfaceΣ (other than the sphere) of Euler genus eg(G,Σ), with sufficiently large
representativity (as a function of both eg(G,Σ) and k), then G possesses both properties
P(2, k) and C(k).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

If k is a positive integer, graph G is said to have property C(k) if for every set S of k vertices, there is a cycle in G passing
through all members of S (in any order). The maximum value of k for which a graph G has property C(k) is called the
cyclability of G. This concept was first introduced 1971 by Chvátal (cf. [7]). It is an old, and well-known, result of Dirac
[8] that every k-connected graph possesses property C(k). If one assumes that the graphs under consideration have more
restrictive properties, one can often do better than Dirac’s result. For example, if a graphG is k-connected and k-regular, then
G has property C(k+ 4) (cf. [11,13]), if it is 3-connected and cubic, it has property C(9) (cf. [14]), if it is 3-connected, planar
and not K4, it has property C(5) (cf. [18]) and, finally, if it is 3-connected, cubic and planar, it is known to have property
C(23) (cf. [2]). In the last three of these four examples, the bound expressed is sharp.
Thomas and Yu [24,25] proved that every 4-connected projective-planar graph is Hamiltonian, thus proving a conjecture

of Grünbaum. Altschuler [3] showed that every 6-connected toroidal graph is Hamiltonian. Brunet and Richter [6] showed
that every 5-connected triangulation of the torus is Hamiltonian. (See also [25].) A stronger result was conjectured
independently by Grünbaum [10] and Nash-Williams [16], namely, that every 4-connected toroidal graph is Hamiltonian,
but this remains open. For the Klein bottle, Brunet, Nakamoto and Negami [5] proved that every 5-connected triangulation
is Hamiltonian. Kawarabayashi [12] has conjectured more, namely, that every 4-connected graph embeddable on the Klein
bottle is Hamiltonian, but to date this too is unproved.
Of course, any Hamiltonian graph G is, in particular, C(|V (G)|). There are a host of papers on cyclability for special classes

of graphs, but they are too numerous to mention here.
A graph G is said to have property P(2, k) if given any set of k + 2 vertices {a, b; v1, . . . , vk} there is a path in G joining

vertices a and b and passing through all of v1, . . . , vk (in any order). It follows easily from a result of Dirac (again cf. [8]) that
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if a graph G is n-connected for n ≥ 2, then G is P(2, n − 1). (See [17].) If G is 4-connected and planar, it is Hamiltonian-
connected, by a beautiful result of Thomassen [20] and hence is P(2, |V (G)| − 2). On the other hand, if a graph G is
only 3-connected, it is P(2, 3), but there are infinitely many 3-connected (and even planar) graphs which are not P(2, 4).
(Cf. [17].)
A surface Σ is a connected compact Hausdorff space which is locally homeomorphic to an open disc in the plane. If a

graph G is embedded in the surfaceΣ , we denote by eg(G,Σ) the number satisfying the equation |V (G)|−|E(G)|+|F(G)| =
2 − eg(G,Σ) where V (G), E(G) and F(G) denote the sets of vertices, edges and faces of the embedded graph respectively.
(eg(G,Σ) is called the Euler genus of the embedding.)
The representativity (or face-width) of a graph G embedded in a surfaceΣ , denoted fw(G,Σ), is defined as the min{|Γ ∩

V (G)| : Γ is a homotopically nontrivial simple closed curve in Σ and Γ ∩ G ⊆ V (G)}. Let x and y be vertices in G. We use
dGΣ (x, y) to denote the min{|Γ ∩ V (G)| : Γ is a simple curve in Σ from x to y and Γ ∩ G ⊆ V (G)}. Similarly, for two
disjoint vertex sets C and D in G, we let dGΣ (C,D) = min{dGΣ (x, y) : x ∈ C and y ∈ D}. For a comprehensive treatment of
representativity as well as embedded graphs in general, we refer the reader to [15].
Thomassen [22] conjectured that if the representativity of a 5-connected triangulation is large enough, then it is

Hamiltonian. This was subsequently proved by Yu [27]. Later, the first author [12] showed more; namely, that every 5-
connected triangulation of a surface of large enough representativity is, in fact, Hamiltonian-connected.
Thomassen [22] also pointed out that 5-connectivity is best possible here by providing for every surface constructions

of 4-connected graphs embedded with arbitrarily large representativity which are not even 1-tough (and hence not
Hamiltonian).
In the present paper, we will use the so-called method of ‘‘planarizing cycles’’, introduced in [21,23] and refined further

in [27] to show that a 4-connected graph embedded in an orientable surface with sufficiently large representativity (as a
function of the genus and the integer k), has property P(2, k) (respectively, property C(k)). To accomplish this, wewill make
use of the following theorem of Yu. (For an application of this theorem to matching by Aldred and the present authors,
see [1]).

Theorem 1.1 ([27]). Let G be a connected graph embedded in a surface Σ (other than the sphere) with eg(G,Σ) = g and
fw(G,Σ) ≥ 8(d+ 1)(2g − 1). Then G can be reduced to a graph H embedded in a disjoint union S of spheres by cutting along a
set of ‘‘planarizing’’ cycles {C1, . . . , Cm} (in this order) such that
(i) each Ci is induced,
(ii) for every integer k with 0 ≤ k ≤ d/2 there is an induced cycle Dki

′ (and Dki if Ci is orientation preserving) which bounds a
closed disc in S containing C ′i (and Ci) such that for every vertex z ∈ D

k
i
′ (and z ∈ Dki ) there is a simple curve P in S from z to

C ′i (and Ci) with length equal to dHS(z, C
′

i ) = k+ 1 (and dHS(z, Ci) = k+ 1) and P ∩ D
k
i
′
= {z} (and P ∩ Dki = {z}), and

(iii) all Dki and D
k
i
′ are disjoint, and for each integer k with 0 ≤ k ≤ d/2, the closed disc bounded by Dki

′ containing C ′i is disjoint
from the closed disc bounded by Dki containing Ci, and both do not contain the disc bounded by D

k
j
′ or Dkj containing C

′

j or Cj
for any j > i.

It was subsequently pointed out, first for triangulations in [21] and later for arbitrary 2-connected graphs in [4], that if
one starts with a 2-connected graph G in the above theorem, then the planarizing cycles can be chosen in such a way that
when the vertices and edges of G lying in the interiors of the g cylinders between Dki

′ and Dki , for 1 ≤ i ≤ g , are deleted, the
resulting plane graph H is connected.
We shall also use a result of Sanders [19] on paths in planar graphs. We follow the terminology and notation of his paper

to introduce this result. For a subgraph H of G, the bridges of H in G are defined as follows. A trivial bridge of H in G is an edge
in E(G) \ E(H)with both ends in V (H). A non-trivial bridge of H in G is a component K of G \H with all vertices of H adjacent
to vertices of K added and all edges with one end in H and the other in K added. The vertices of attachment of a bridge B of
H in G is the set V (B)∩ V (H). A bridge is attached to its vertices of attachment. A path (cycle) P , a subgraph of a plane G, is a
Tutte path (cycle) if and only if each bridge of P has at most three vertices of attachment and each bridge containing an edge
of the infinite face boundary has at most two vertices of attachment. Sanders’ theorem can then be stated as follows.

Theorem 1.2 ([19]). Let G be a 2-connected plane graph. Let e be an edge of the boundary of the infinite face, and let x and y be
arbitrary distinct vertices of G. Then G has a Tutte path P from x to y through edge e.

2. The main results

Theorem 2.1. Suppose G is a 4-connected graph embedded in an orientable surfaceΣ with Euler genus eg(G,Σ) = g and that
k is a positive integer. Then if fw(G) > f (g, k) = 8(4k + 13)(2g − 1) and if {a, b; v1, . . . , vk} is any set of k + 2 distinct
vertices, there is a path P joining a and b which passes through all of v1, . . . , vk.
Proof. Let S = {a, b; v1, . . . , vk} be a set of k+2 distinct vertices. If g = 0, i.e., G is planar, then G is Hamiltonian-connected
(i.e., it has a Hamiltonian path joining every pair of vertices) by Corollary 2 of [20] and we are done. So henceforth we shall
assume that g > 0.
First note that if one slices a cylinder via at least 4k + 12 slices, C1, . . . , C4k+12, there must be at least four consecutive

slices in this sequence such that none of the subcylinders thus formed or their boundaries contain any vertex of S. So in the
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