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a b s t r a c t

Smooth 4-regular Hamiltonian graphs are generalizations of cycle-plus-triangles graphs.
While the latter have been shown to be 3-choosable, 3-colorability of the former is
NP-complete. In this paper we first show that the independent set problem for 3-regular
Hamiltonian planar graphs is NP-complete, and using this result we show that this problem
is also NP-complete for smooth 4-regular Hamiltonian graphs.We also show that this prob-
lem remains NP-complete if we restrict the problem to the existence of large independent
sets (i.e., independent sets whose size is at least one third of the order of the graphs).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In an earlier paper [1], two of the present authors considered the question of the 3-colorability of the so-called smooth
4-regular Hamiltonian graphs. These are generalizations of the well-known cycle-plus-triangles graphs; for the latter,
3-colorability had been conjectured by Erdös [5] and was proved by Fleischner and Stiebitz [2]. A 4-regular graph G with a
Hamiltonian cycle H is smooth if each component of the edge-complement G \ H is a cycle which is ‘‘non-selfcrossing’’ in
the sense that the cyclic order of its vertices agrees with their cyclic order of H .
It was shown in [1] that the problem of decidingwhether an arbitrary smooth 4-regular Hamiltonian graph is 3-colorable

isNP-complete. As 3-colorability of a graph of ordern implies the existence of a ‘‘large’’ independent set of vertices, i.e. having
cardinality at least n/3, the result of [1] suggests that the problem of deciding the existence of such a set for an arbitrary
smooth 4-regular Hamiltonian graph also may be NP-complete. In the present paper we show that this is indeed the case.
In general, two problems that are similar in spirit present themselves.
Large independent set problem (LIS): Given a graph G of order n and maximum degree d, does G contain an independent

set of vertices of cardinality at least n/(d− 1)?
Note that by Brooks’ theorem any graph of maximum degree d ≥ 4 except Kd+1 has an independent set of cardinality

≥ n/d. Independent sets of cardinality≥ n/(d− 1)will be called large; for the 4-regular graphs under consideration in the
present paper this means independent sets of size at least n/3.
Maximum independent set problem (MIS): Given a graph G and a positive integer k, does G contain an independent set of

vertices of cardinality at least k?
We consider the two problems for the class S of all smooth 4-regular Hamiltonian graphs. Our main result is that both

MIS and LIS are NP-complete in this class (Theorems 3.3 and 5.2).
Starting with the well-known fact that MIS is NP-complete in the class G3 of all 3-regular graphs we show first that MIS

is also NP-complete inH3, the class of all Hamiltonian 3-regular graphs (Section 2). The proof of the NP-completeness of MIS
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Fig. 1. The graph L.

in S is then carried out by a polynomial reduction from S to H3 (Sections 3 and 4). It is a special feature of all the reductions
and constructions carried out in this paper that they produce planar graphs when applied to planar graphs to begin with.
The graphswe consider are finite and simple.We note, however, that our results onMIS and LIS also hold formultigraphs

provided one edge of every pair of parallel edges belongs to H . An edge e with endpoints x, y will be denoted by e = xy.
If H is a subgraph of a graph G, we denote by G \ H the edge-complement of H in G, i.e. the graph with V (G \ H) = V (G),
E(G \ H) = E(G) \ E(H). Thus G \ H may have isolated vertices.
By aHamiltonian graphwemean a pair (G,H), where G is a graph andH a Hamiltonian cycle of G. Occasionally we refer to

G alone as being a Hamiltonian graph, but it is always understood that a specific Hamiltonian cycle is given. If G is 4-regular
the components of G \ H are called the inner cycles of G.
The following conceptwhich refers to both cycles and pathswill be needed. LetD1,D2 be subgraphs of a graphG such that

V (D2) ⊂ V (D1), and Di is either a cycle or a path whose endpoints are non-adjacent in G, i = 1, 2. If Di is a path, let Ci be the
cycle obtained from Di by adding an edge joining its endpoints; if Di is a cycle, let Ci = Di. We say that D2 is non-selfcrossing
with respect to D1, if the cyclic order of the vertices of C2 coincides with their cyclic order on C1, i.e. if the cyclic order of the
vertices of C2 is the restriction to V (D2) of the cyclic order on C1.
As already mentioned at the beginning of this section, a 4-regular Hamiltonian graph (G,H) will be called smooth if its

inner cycles are non-selfcrossing with respect to H .
The independence number of a graph G, denoted by αG, is the cardinality of a maximum independent set of vertices of G.

The independence ratio of G is αG/n, where n is the order of G.

2. 3-regular Hamiltonian graphs

ThatMIS is an NP-complete problem for 3-regular Hamiltonian graphs is probably awell-known piece of graph-theoretic
folklore. Not having found any reference in the literature, we include here a proof, at the same time strengthening the result
by showing that NP-completeness of MIS already holds for planar cubic Hamiltonian graphs.

Proposition 2.1. MIS is NP-complete in the class PH3 of all planar 3-regular Hamiltonian graphs.

This follows at once from the fact that MIS is NP-complete in the class P3 of all planar 3-regular graphs
[3, p. 194] and Lemmas 2.2 and 2.3.
Let L be the ladder-like graph on 14 vertices shown in Fig. 1. One easily checks that its independence number is 6, and

that each maximum independent set of L contains exactly one of u1, v1 and exactly one of u2, v2.
Consider an arbitrary (not necessarily connected) graph G of order n having two non-adjacent edges e1, e2 and subdivide

each by two new vertices. Denote by e′i the new edge joining the two subdivision vertices of ei, i = 1, 2. Form G
′ by taking

a copy of L disjoint from G and identifying the endpoints of e′i with ui, vi, i = 1, 2. It does not matter which endpoint of
e′i is identified with ui and which with vi. The operation just described of adding the graph L to G will be referred to as an
L-insertion. Obviously, L-insertion preserves 3-regularity.

Lemma 2.2. If G′ is obtained form G by an L-insertion, then αG′ = αG + 6.

Proof. It follows immediately from the properties of L that, if J is an independent set of G, then the union of J and a suitably
chosen maximum independent set of L is an independent set of G′ of cardinality | J| + 6. Hence

αG′ ≥ αG + 6.

Conversely, given an independent set I0 of G′, consider J0 = I0 ∩ V (G). There are two possibilities.
Case 1. J0 is an independent set of G. Then I0 \ J0 is an independent set of L; hence |I0 \ J0| ≤ 6, and therefore |I0| ≤ | J0| + 6.
Case 2. J0 contains two vertices x, y such that xy ∈ E(G). Then xy is one of the edges used in carrying out the L-insertion, say
xy = e1. It follows that, in G′, one of u1, v1 is a neighbor of x, and the other a neighbor of y, say xu1, yv1 ∈ E(G′). Therefore,
u1, v1 6∈ I0. Now define I1 as follows:

I1 =
{
(I0 \ {y}) ∪ {v1}, if u′1 ∈ I0,
(I0 \ {x}) ∪ {u1}, if v′1 ∈ I0,
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