On cube-free median graphs

Boštjan Brešarar ${ }^{\text {a,1 }}$, Sandi Klavžar ${ }^{\text {b,2 }}$, Riste Škrekovski ${ }^{\text {c, d, 3,4 }}$
${ }^{\text {a }}$ FEECS, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, PeF, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
${ }^{\text {c }}$ Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia
${ }^{\mathrm{d}}$ Charles University, Faculty of Mathematics and Physics, DIMATIA, and Institute for Theoretical Computer Science (ITI) Malostranské nám. 2/25, 118 00, Prague, Czech Republic

Received 4 July 2003; received in revised form 17 July 2004; accepted 26 September 2004
Available online 28 August 2006

Abstract

Let G be a cube-free median graph. It is proved that $k / 2 \geqslant \sqrt{n}-1 \geqslant m / 2 \sqrt{n} \geqslant \sqrt{s} \geqslant r-1$, where n, m, s, k, and r are the number of vertices, edges, squares, Θ-classes, and the number of edges in a smallest Θ-class of G, respectively. Moreover, the equalities characterize Cartesian products of two trees of the same order. The cube polynomial of cube-free median graphs is also considered and it is shown that planar cube-free median graphs can be recognized in linear time.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Median graph; Cube-free graph; Cartesian product; Recognition algorithm

1. Introduction

Cube-free median graphs are, by definition, median graph without an induced 3-cube Q_{3}. This class of graphs naturally appears in different contexts. For instance, cube-free median graphs are precisely the bipartite absolute retracts without induced $K_{2,3}$ [3], and they play an important role in the location theory [2,11]. Cube-free median graphs are also precisely those median graphs for which the equality is attained in an Euler-type formula for median graphs [9].

Edges $x y$ and $u v$ of a graph G are in the Djoković-Winkler relation $\Theta[5,14]$ if

$$
d_{G}(x, u)+d_{G}(y, v) \neq d_{G}(x, v)+d_{G}(y, u)
$$

Relation Θ is reflexive and symmetric in general and transitive on median graphs. Hence it partitions the edge set of a median graph into equivalence classes, called Θ-classes.

[^0]Let G be a cube-free median graph. Then the following invariants of G are important to us:
$n \quad$ the number of its vertices,
$m \quad$ the number of its edges,
s the number of its (induced) squares,
k the number of its Θ-classes, and
$r \quad$ the number of the edges in its smallest Θ-class.
The main result of this note asserts that

$$
\frac{k}{2} \geqslant \sqrt{n}-1 \geqslant \frac{m}{2 \sqrt{n}} \geqslant \sqrt{s} \geqslant r-1 .
$$

Moreover, if G is not a tree, then in any of the above inequalities, the equality holds if and only if G is the Cartesian product of two trees of the same order.

In the next section we recall concepts and results needed later. We follow this with a section in which the main result is proved. In the concluding section we give some more properties of cube-free median graphs. We give a few remarks on the cube polynomial of cube-free median graphs-we show that they always have two real zeros, and we give a combinatorial interpretation to their extreme points. Finally, we show that planar cube-free median graphs can be recognized in linear time.

2. Preliminaries

The Cartesian product $G \square H$ of two graphs G and H is the graph with vertex set $V(G) \times V(H)$ and $(a, x)(b, y) \in$ $E(G \square H)$ whenever either $a b \in E(G)$ and $x=y$, or $a=b$ and $x y \in E(H)$. The r-cube Q_{r} is the Cartesian product of r copies of the complete graph on two vertices K_{2}.
The interval $I(u, v)$ between two vertices u and v in G is the set of all vertices on shortest paths between u and v. A subgraph H of G is convex if we have $I(u, v) \subseteq V(H)$ for every $u, v \in V(H)$. A graph G is a median graph if $|I(u, v) \cap I(u, w) \cap I(v, w)|=1$ holds for every triple of vertices u, v, and w. The vertex of this intersection is called the median of the triple u, v, w. It is easy to see that median graphs are bipartite and that the Cartesian product operation preserves median graphs. In addition, a median graph cannot have convex cycles of length greater than 4.

Let $G=(V, E)$ be a graph, V_{1} and V_{2} subsets of V with nonempty intersection, and $V=V_{1} \cup V_{2}$. Suppose that V_{1} and V_{2} induce isometric subgraphs of G and that no vertex of $V_{1} \backslash V_{2}$ is adjacent to a vertex of $V_{2} \backslash V_{1}$. In addition, let $V_{1} \cap V_{2}$ be a convex set in G. Then the convex expansion of a graph G with respect to V_{1} and V_{2} is the graph obtained from G by the following procedure:
(i) replace each vertex $v \in V_{1} \cap V_{2}$ by vertices v_{1}, v_{2} and insert the edge $v_{1} v_{2}$.
(ii) insert edges between v_{1} and the neighbors of v in $V_{1} \backslash V_{2}$ as well as between v_{2} and the neighbors of v in $V_{2} \backslash V_{1}$.
(iii) insert the edges $v_{1} u_{1}$ and $v_{2} u_{2}$ whenever $v, u \in V_{1} \cap V_{2}$ are adjacent in G.

We also refer to this as the convex expansion of G over G_{0}, where G_{0} is a subgraph of G induced by $V_{1} \cap V_{2}$. Mulder $[12,13]$ proved that a graph is a median graph if and only if it can be obtained from K_{1} by a sequence of convex expansions.

In the next proposition we recall two properties of cube-free median graphs that will be needed later. The first one was given in [10, Corollary 3] and the second follows from the main result of [9]. However, to be self-contained as much as possible we give here their short (unified) proofs.

Proposition 2.1. Let G be a cube-free median graph with n vertices, m edges, s squares, and k classes of the relation Θ. Then

$$
s=m-n+1 \quad \text { and } \quad k=-m+2 n-2 .
$$

Proof. We prove the claim by induction on the number of expansion steps. The statement is true for K_{1}. So let G be obtained by an expansion from a cube-free median graph G^{\prime} over G_{0}. Then G_{0} is a tree. Let $n^{\prime}, m^{\prime}, k^{\prime}$, and s^{\prime} be the

https://daneshyari.com/en/article/4649059

Download Persian Version:

https://daneshyari.com/article/4649059

Daneshyari.com

[^0]: E-mail addresses: bostjan.bresar@uni-mb.si (B. Brešar), sandi.klavzar@uni-mb.si (S. Klavžar), skreko@fmf.uni-lj.si (R. Škrekovski).
 ${ }^{1}$ Supported by the Ministry of Education, Science and Sport of Slovenia under the Grant Z1-3073-0101-01.
 ${ }^{2}$ Supported by the same Ministry under the Grant J1-0504-0101.
 ${ }^{3}$ Supported by the same Ministry under the Grant Z1-3219-0101.
 ${ }^{4}$ Supported in part by the Ministry of Education of Czech republic, Project LN00A056.

