

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

There exists no tetravalent half-arc-transitive graph of order $2p^2$

Xiuyun Wang, Yan-Quan Feng*

Department of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China

ARTICLE INFO

Article history: Received 6 July 2008 Accepted 17 November 2009 Available online 1 December 2009

Keywords: Cayley graph Vertex-transitive graph Edge-transitive graph Half-arc-transitive graph

ABSTRACT

A graph is half-arc-transitive if its automorphism group acts transitively on its vertex set, edge set, but not arc set. In this paper, we show that there is no tetravalent half-arc-transitive graph of order $2p^2$.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper graphs are assumed to be finite, simple and undirected, but with an implicit orientation of the edges when appropriate. For a graph X, we let V(X), E(X), A(X) and Aut(X) be the vertex set, the edge set, the arc set and the automorphism group of X, respectively.

A graph X is said to be *vertex-transitive*, *edge-transitive* or *arc-transitive* if Aut(X) acts transitively on V(X), E(X), or A(X), respectively. A graph is said to be 1/2-*arc-transitive* or *half-arc-transitive* provided that it is vertex-transitive and edge-transitive, but not arc-transitive. More generally, by a 1/2-arc-transitive or half-arc-transitive action of a subgroup G of Aut(X) on a graph X we shall mean a vertex-transitive and edge-transitive, but not arc-transitive action of G on X. In this case, we shall say that the graph X is (G, 1/2)-*arc-transitive*.

The investigation of half-arc-transitive graphs was initiated by Tutte [30] and he proved that a vertex- and edge-transitive graph with odd valency must be arc-transitive. In 1970, Bouwer [4] constructed the first family of half-arc-transitive graphs and later more such graphs were constructed (see for instance [2,10,15,16,29,31]). Let p be a prime. It is well known that there is no half-arc-transitive graph of order p or p^2 . Xu [34] classified the tetravalent half-arc-transitive graphs of order p^3 and Feng et al. [12] classified the tetravalent half-arc-transitive graphs of order p^4 . By Cheng and Oxley [6], there is no tetravalent half-arc-transitive graph of order p^4 and a classification of tetravalent half-arc-transitive graphs of order p^4 . In this paper we show that there is no tetravalent half-arc-transitive graph of order p^4 . For more results on tetravalent half-arc-transitive graphs, see [1,7,8,11,13,17–23,27,28,33,35].

For a finite group G and a subset S of G such that $1 \notin S$ and $S = S^{-1}$, the Cayley graph Cay(G, S) on G with respect to S is defined to have vertex set G and edge set $\{\{g, sg\} \mid g \in G, s \in S\}$. Given a $g \in G$, define the permutation R(g) on G by $x \mapsto xg$, $x \in G$. Then $R(G) = \{R(g) \mid g \in G\}$ is a permutation group isomorphic to G, which is called the *right regular representation* of G. The Cayley graph Cay(G, S) is vertex-transitive since it admits R(G) as a regular subgroup of the automorphism group Cay(G, S). Furthermore, the group $Cay(G, S) = \{x \in Aut(G) \mid S^{\alpha} = S\}$ is a subgroup of Cay(G, S). Actually, Cay(G, S) is a subgroup of Cay(G, S), the stabilizer of the vertex 1 in Cay(G, S). A graph Cay(G, S) is is isomorphic to a

^{*} Corresponding author.

E-mail address: yqfeng@bjtu.edu.cn (Y.-Q. Feng).

Cayley graph on a group G if and only if its automorphism group $\operatorname{Aut}(X)$ has a subgroup isomorphic to G, acting regularly on the vertex set of X (see [3, Lemma 16.3]). A Cayley graph $\operatorname{Cay}(G, S)$ is said to be *normal* if $\operatorname{Aut}(\operatorname{Cay}(G, S))$ contains R(G) as a normal subgroup.

Let X and Y be two graphs. The *lexicographic product* X[Y] is defined as the graph with vertex set $V(X[Y]) = V(X) \times V(Y)$ and two vertices $u = (x_1, y_1)$ and $v = (x_2, y_2)$ in V(X[Y]) being adjacent in X[Y] whenever x_1 is adjacent to x_2 , or $x_1 = x_2$ and y_1 is adjacent to y_2 . Clearly, if both X and Y are arc-transitive then X[Y] is arc-transitive.

To end the section we list some preliminary results that will be used later. Note that there is no half-arc-transitive graph of order p or p for a prime p (see [5,6]), and all vertex-transitive graphs with fewer than 22 vertices were listed in [24,25]. By the proof that there is no half-arc-transitive graph of order 24 given in [26], one may conclude that there is no half-arc-transitive graph with fewer than 27 vertices.

Proposition 1.1. There is no half-arc-transitive graph with fewer than 27 vertices.

Let $X = \operatorname{Cay}(G, S)$ be a Cayley graph on a group G with respect to S. If $s \in S$ is an involution then $R(s) \in \operatorname{Aut}(X)$ interchanges the two arcs (1, s) and (s, 1) in X. Moreover, if there exist $\alpha \in \operatorname{Aut}(G, S)$ and $t \in S$ such that $t^{\alpha} = t^{-1}$ then $\alpha R(t)$ interchanges the arcs (1, t) and (t, 1). This implies the following proposition.

Proposition 1.2. Let X = Cay(G, S) be a half-arc-transitive graph. Then there is no involution in S and no $\alpha \in \text{Aut}(G, S)$ such that $s^{\alpha} = s^{-1}$ for any given $s \in S$.

Let X = Cay(G, S) be a Cayley graph on an abelian group G. Note that the mapping $\alpha : x \to x^{-1}$, $x \in G$, is an automorphism of G and so Proposition 1.2 implies the following proposition.

Proposition 1.3. Every edge-transitive Cayley graph on an abelian group is also arc-transitive.

The following is a fundamental result from permutation group theory.

Proposition 1.4 ([32, Theorem 3.4]). Let G be a permutation group on Ω and $\alpha \in \Omega$. Let p be a prime number, p^m a divisor of $|\alpha^G|$, and P a Sylow p-subgroup of G. Then p^m is also a divisor of $|\alpha^P|$.

It is well known that every transitive permutation group of prime degree p is either 2-transitive or solvable with a regular normal Sylow p-subgroup (for example, see [9, Corollary 3.5B]), which implies the following proposition.

Proposition 1.5. Let X be a graph of prime order p which is neither the empty graph nor the complete graph. Then every vertex-transitive subgroup of Aut(X) has a normal Sylow p-subgroup.

2. Main result

The main purpose of this paper is to prove the following theorem.

Theorem 2.1. There is no tetravalent half-arc-transitive graph of order $2p^2$.

Proof. Suppose to the contrary that X is a tetravalent half-arc-transitive graph of order $2p^2$. Then X is connected because there is no half-arc-transitive graph of order p, 2p or p^2 . By Proposition 1.1, one may assume that p > 5. Let $A = \operatorname{Aut}(X)$.

Clearly, X is (A, 1/2)-arc-transitive graph. Then in the natural action of A on $V(X) \times V(X)$, the arc set of X is a union of two paired orbits of A, say A_1 and A_2 , that is, $A_2 = \{(v, u) \mid (u, v) \in A_1\}$. Thus, one can obtain two oriented graphs having V(X) as vertex set and A_1 or A_2 as arc set, respectively. Let $D_A(X)$ be one of the two oriented graphs. Then $D_A(X)$ has out-valency and in-valency equal to 2 and A acts arc-transitively on it. Since $D_A(X)$ has out-valency and in-valency equal to 2, the stabilizer A_u of $u \in V(X)$ in A is a 2-group. It follows that A is a $\{2, p\}$ -group, implying that A is solvable. First, we prove the following claim.

Claim 1. There is no tetravalent half-arc-transitive Cayley graph of order $2p^2$.

By contradiction, let X = Cay(G, S) be a Cayley graph on a group G of order $2p^2$ with respect to S. Since X is connected, one has |S| = 4, $S^{-1} = S$ and $\langle S \rangle = G$. By Proposition 1.3, G is non-abelian. From the elementary group theory we know that up to isomorphism there are three non-abelian groups of order $2p^2$ for an odd prime p:

$$\begin{split} G_1(p) &= \langle a,b \mid a^{p^2} = b^2 = 1, b^{-1}ab = a^{-1} \rangle, \\ G_2(p) &= \langle a,b,c \mid a^p = b^p = c^2 = 1, c^{-1}ac = a^{-1}, c^{-1}bc = b^{-1}, [a,b] = 1 \rangle, \\ G_3(p) &= \langle a,b,c \mid a^p = b^p = c^2 = 1, [a,b] = [a,c] = 1, c^{-1}bc = b^{-1} \rangle. \end{split}$$

It follows that G is isomorphic to one of $G_1(p)$, $G_2(p)$ or $G_3(p)$. Note that G has a normal Sylow p-subgroup. Suppose that G is isomorphic to $G_1(p)$ or $G_2(p)$. Since S generates G, G contains at least one involution, which contradicts Proposition 1.2.

Download English Version:

https://daneshyari.com/en/article/4649248

Download Persian Version:

https://daneshyari.com/article/4649248

<u>Daneshyari.com</u>