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a b s t r a c t

In this paper we prove several new stability results for the reconstruction of binary images
from two projections. We consider an original image that is uniquely determined by its
projections and possible reconstructions from slightly different projections. We show that
for a given difference in the projections, the reconstruction can only be disjoint from the
original image if the size of the image is not too large.We also prove an upper bound for the
size of the image given the error in the projections and the size of the intersection between
the image and the reconstruction.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Discrete tomography is concernedwith problems such as reconstructing binary images on a lattice fromgiven projections
in lattice directions [6]. Each point of a binary image has a value equal to zero or one. The line sumof a line through the image
is the sum of the values of the points on this line. The projection of the image in a certain lattice direction consists of all the
line sums of the lines through the image in this direction.
Several problems related to the reconstruction of binary images from two or more projections have been described in

the literature [6,7]. Already in 1957, Ryser gave an algorithm to reconstruct binary images from their horizontal and vertical
projections and characterised the set of projections that correspond to a unique binary image [11]. For any set of directions,
it is possible to construct images that are not uniquely determined by their projections in those directions [6, Theorem4.3.1].
The problem of deciding whether an image is uniquely determined by its projections and the problem of reconstructing it
are NP-hard for any set of more than two directions [4].
Aside from various interesting theoretical problems, discrete tomography also has applications in a wide range of fields.

The most important are electron microscopy [8] and medical imaging [5,13], but there are also applications in nuclear
science [9,10] and various other fields [12,15].
An interesting problem in discrete tomography is the stability of reconstructions. Even if an image is uniquely determined

by its projections, a very small error in the projectionsmay lead to a completely different reconstruction [1,3]. Alpers et al. [1,
2] showed that in the case of two directions a total error of at most 2 in the projections can only cause a small difference in
the reconstruction. They also proved a lower bound on the error if the reconstruction is disjoint from the original image.
In this paper we improve this bound, and we resolve the open problem of stability with a projection error greater than 2.

2. Notation and statement of the problems

Let F1 and F2 be two finite subsets of Z2 with characteristic functions χ1 and χ2. (That is, χh(x, y) = 1 if and only if
(x, y) ∈ Fh, h ∈ {1, 2}.) For i ∈ Z, we define row i as the set {(x, y) ∈ Z2 : x = i}. We call i the index of the row. For j ∈ Z,
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Fig. 1. A uniquely determined set with the assumed row and column ordering.

we define column j as the set {(x, y) ∈ Z2 : y = j}. We call j the index of the column. Following matrix notation, we use row
numbers that increase when going downwards and column numbers that increase when going to the right.
The row sum r (h)i is the number of elements of Fh in row i, that is r

(h)
i =

∑
j∈Z χh(i, j). The column sum c

(h)
j of Fh is the

number of elements of Fh in column j, that is c
(h)
j =

∑
i∈Z χh(i, j). We refer to both row and column sums as the line sums of

Fh.
Throughout this paper, we assume that F1 is uniquely determined by its row and column sums. Such sets were studied

by, among others, Ryser [11] andWang [14]. Let a be the number of rows and b the number of columns that contain elements
of F1. We renumber the rows and columns such that we have

r (1)1 ≥ r
(1)
2 ≥ · · · ≥ r

(1)
a > 0,

c(1)1 ≥ c
(1)
2 ≥ · · · ≥ c

(1)
b > 0,

and such that all elements of F2 are contained in rows and columns with positive indices. By [14, Theorem 2.3] we have the
following property of F1 (see Fig. 1):

• in row i the elements of F1 are precisely the points (i, 1), (i, 2), . . . , (i, r
(1)
i ),

• in column j the elements of F1 are precisely the points (1, j), (2, j), . . . , (c
(1)
j , j).

We will refer to this property as the triangular shape of F1.
Everywhere except in Section 6 we assume that |F1| = |F2|. Note that we do not assume F2 to be uniquely determined.
As F1 and F2 are different and F1 is uniquely determined by its line sums, F2 cannot have exactly the same line sums as

F1. Define the difference or error in the line sums as∑
j≥1

|c(1)j − c
(2)
j | +

∑
i≥1

|r (1)i − r
(2)
i |.

As in general |t − s| ≡ t + smod 2, the above expression is congruent to∑
j≥1

(
c(1)j + c

(2)
j

)
+

∑
i≥1

(
r (1)i + r

(2)
i

)
≡ 2|F1| + 2|F2| ≡ 0 mod 2,

hence the error in the line sums is always even. We will denote it by 2α, where α is a positive integer.
For notational convenience, we will often write p for |F1 ∩ F2|.
We consider two problems concerning stability.

Problem 1. Suppose F1 ∩ F2 = ∅. How large can |F1| be in terms of α?

Alpers et al. [2, Theorem 29] proved that |F1| ≤ α2. They also showed that there is no constant c such that |F1| ≤ cα
for all F1 and F2. In Section 4 of this paper we will prove the new bound |F1| ≤ α(1 + logα) and show that this bound is
asymptotically sharp.

Problem 2. How small can |F1 ∩ F2| be in terms of |F1| and α, or, equivalently, how large can |F1| be in terms of |F1 ∩ F2| and α?

Alpers ([1, Theorem 5.1.18]) showed in the case α = 1 that

|F1 ∩ F2| ≥ |F1| +
1
2
−

√
2|F1| +

1
4
.

This bound is sharp: if |F1| = 1
2n(n+ 1) for some positive integer n, then there exists an example for which equality holds.

A similar result is stated in [2, Theorem 19].
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