Discrete Mathematics 309 (2009) 5596-5609

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A-backbone colorings along pairwise disjoint stars and matchings

H.J. Broersma?*, J. FujisawaP, L. Marchal ¢, D. Paulusma?, A.N.M. Salman 9, K. Yoshimoto©

a Department of Computer Science, Durham University, South Road, DH1 3LE, Durham, United Kingdom
b Department of Computer Science, Nihon University, Sakurajosui 3-25-40, Setagaya-Ku, Tokyo 156-8550, Japan
€ Quantitative Economics, Maastricht University, P.0. Box 616, 6200 MD Maastricht, The Netherlands

d combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung,
Jalan Ganesa 10 Bandung 40132, Indonesia
€ Department of Mathematics, College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8308, Japan

ARTICLE INFO ABSTRACT

Article history: Given an integer A > 2, a graph G = (V, E) and a spanning subgraph H of G (the backbone of
Received 4 August 2006 G), a A-backbone coloring of (G, H) is a proper vertex coloring V — {1, 2, ...} of G, in which
Accepted 1 April 2008 the colors assigned to adjacent vertices in H differ by at least A. We study the case where

Available online 14 May 2008 the backbone is either a collection of pairwise disjoint stars or a matching. We show that

for a star backbone S of G the minimum number ¢ for which a A-backbone coloring of (G, S)
with colorsin {1, ..., £} exists can roughly differ by a multiplicative factor of at most 2 — %
A-backbone coloring number from the chr02111at1c number x(G). For the special case of matchlhng backbones this fagtor is
Star roughly 2 — - We also show that the computational complexity of the problem “Given a
Matching graph G with a star backbone S, and an integer ¢, is there a A-backbone coloring of (G, S) with
colorsin {1, ..., ¢}?” jumps from polynomially solvable to NP-complete between £ = A +1
and ¢ = A 42 (the case £ = A+ 2 is even NP-complete for matchings). We finish the paper
by discussing some open problems regarding planar graphs.
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1. Introduction

In [7] backbone colorings are introduced, motivated and put into a general framework of coloring problems related to
frequency assignment.

Graphs are used to model the topology and interference between transmitters (receivers, base stations, sensors): the
vertices represent the transmitters; two vertices are adjacent if the corresponding transmitters are so close (or so strong)
that they are likely to interfere if they broadcast on the same or ‘similar’ frequency channels. The problem is to assign the
frequency channels in an economical way to the transmitters in such a way that interference is kept at an ‘acceptable level'.
This has led to various types of coloring problems in graphs, depending on different ways to model the level of interference,
the notion of similar frequency channels, and the definition of acceptable level of interference (see, e.g., [ 16,20]). Although
new technologies have led to different ways of avoiding interference between powerful transmitters, such as base stations
for mobile telephones, the above coloring problems still apply to less powerful transmitters, such as those appearing in
sensor networks.

We refer the reader to [6,7] for an overview of related research, but we repeat the general framework and some of the
related research here for convenience and background.
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Given two graphs G, and G, with the property that G is a spanning subgraph of G,, one considers the following type of
coloring problems: Determine a coloring of (G; and) G, that satisfies certain restrictions of type 1in Gy, and restrictions
of type 2 in G;.

Many known coloring problems fit into this general framework. We mention some of them here explicitly, without giving
details. First of all suppose that G, = G2, i.e. G, is obtained from G; by adding edges between all pairs of vertices that are at
distance 2 in G;. If one just asks for a proper vertex coloring of G, (and G;), this is known as the distance-2-coloring problem.
Much of the research has been concentrated on the case that G; is a planar graph. We refer to [1,4,5,18,21] for more details.
In some versions of this problem one puts the additional restriction on G, that the colors should be sufficiently separated, in
order to model practical frequency assignment problems in which interference should be kept at an acceptable level. One
way to model this is to use positive integers for the colors (modeling certain frequency channels) and to ask for a coloring
of G; and G, such that the colors on adjacent vertices in G, are different, whereas they differ by at least 2 on adjacent
vertices in G;. A closely related variant is known as the radio coloring problem and has been studied (under various names)
in [2,9-13,19]. A third variant is known as the radio labeling problem and models a practical setting in which all assigned
frequency channels should be distinct, with the additional restriction that adjacent transmitters should use sufficiently
separated frequency channels. Within the above framework this can be modeled by considering the graph G; that models
the adjacencies of n transmitters, and taking G, = K,, the complete graph on n vertices. The restrictions are clear: one asks
for a proper vertex coloring of G, such that adjacent vertices in G; receive colors that differ by at least 2. We refer to [15,17]
for more particulars.

In [7], a situation is modeled in which the transmitters form a network in which a certain substructure of adjacent
transmitters (called the backbone) is more crucial for the communication than the rest of the network. This means more
restrictions are put on the assignment of frequency channels along the backbone than on the assignment of frequency
channels to other adjacent transmitters.

Postponing the relevant definitions, we consider the problem of coloring the graph G, (that models the whole network)
with a proper vertex coloring such that the colors on adjacent vertices in G; (that models the backbone) differ by at least
A > 2. This is a continuation of the study in [7]. Throughout the paper we consider two types of backbones: matchings and
disjoint unions of stars.

Matching backbones reflect the necessity to assign considerably different frequencies to pairwise very close (or most
likely interfering) transmitters. This occurs in real world applications such as military scenarios, where soldiers or military
vehicles carry two (or sometimes more) radios for reliable communication. Future applications include the use of sensors
or sensor tags in clothes or on bodies.

For star backbones one could think of applications to sensor networks. If sensors have low battery capacities, the tasks
of transmitting data are often assigned to specific sensors, called cluster heads, that represent pairwise disjoint clusters of
sensors. Within the clusters there should be a considerable difference between the frequencies assigned to the cluster head
and to the other sensors within the same cluster, whereas the differences between the frequencies assigned to the other
sensors within the cluster, or between different clusters, are of secondary importance. This situation is well reflected by a
backbone consisting of disjoint stars.

We refer the reader to [7,6] for a more extensive overview of related research, but we repeat the relevant definitions in
the next section.

2. Terminology

For undefined terminology we refer to [3].

Let G = (V, E) be a graph, where V = V¢ is a finite set of vertices and E = E; is a set of unordered pairs of two different
vertices, called edges. A functionf : V — {1, 2, 3, ...} is a vertex coloring of V if |f(u) — f(v)| > 1 holds for all edges uv € E. A
vertex coloring f : V — {1, ..., k} is called a k-coloring. We say that f(u) is the color of u. The chromatic number x(G) is the
smallest integer k for which there exists a k-coloring. A set V' C V is independent if G does not contain edges with both end
vertices in V'. By definition, a k-coloring partitions V into k independent sets V1, ..., V.

Let H be a spanning subgraph of G, i.e., H = (V;, Ey) with E; C E¢. Given an integer A > 1, a vertex coloring f is a A-
backbone coloring of (G, H), if |f(u) — f(v)| > A holds for all edges uv € Ej. A A-backbone coloring f : V — {1, ..., £} is called
a A-backbone £-coloring. The A-backbone coloring number BBC, (G, H) of (G, H) is the smallest integer ¢ for which there exists
a A-backbone £-coloring. Since a 1-backbone coloring is equivalent to a vertex coloring, we assume from now on that A > 2.
Throughout the manuscript we will reserve the symbol “£” for A-backbone ¢-colorings and the symbol “k” for k-colorings.

A path is a graph P whose vertices can be ordered into a sequence vy, v, ..., v, such that Ep = {v{v,, ..., v,_qv,}. Agraph
G is called connected if for every pair of distinct vertices u and v, there exists a path connecting u and v. The length of a path
is the number of its edges. If a graph G contains a spanning subgraph H that is a path, then H is called a Hamiltonian path.

A cycle is a graph C whose vertices can be ordered into a sequence vy, v, ..., v, such that Ec = {viv,, ..., vy_1vy, vov1}. A
tree is a connected graph that does not contain any cycles.

A complete graph is a graph with an edge between every pair of vertices. The complete graph on n vertices is denoted
by K. A graph is called bipartite if its vertices can be partitioned into two sets A and B such that each edge has one of its



Download English Version:

https://daneshyari.com/en/article/4649457

Download Persian Version:

https://daneshyari.com/article/4649457

Daneshyari.com


https://daneshyari.com/en/article/4649457
https://daneshyari.com/article/4649457
https://daneshyari.com/

