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a b s t r a c t

Given a graph G = (V , E) and sets L(v) of allowed colors for each v ∈ V , a list coloring
of G is an assignment of colors ϕ(v) to the vertices, such that ϕ(v) ∈ L(v) for all v ∈ V
and ϕ(u) 6= ϕ(v) for all uv ∈ E. The choice number of G is the smallest natural number k
admitting a list coloring for G whenever |L(v)| ≥ k holds for every vertex v. This concept
has an interesting variant, called Hall number, where an obvious necessary condition for
colorability is put as a restriction on the lists L(v). (On complete graphs, this condition
is equivalent to the well-known one in Hall’s Marriage Theorem.) We prove that vertex
deletion or edge insertion in a graph of order n > 3 may make the Hall number decrease
by as much as n − 3. This estimate is tight for all n. Tightness is deduced from the upper
bound that every graph of order n has Hall number at most n − 2. We also characterize
the cases of equality; for n ≥ 6 these are precisely the graphs whose complements are
K2 ∪ (n− 2)K1, P4 ∪ (n− 4)K1, and C5 ∪ (n− 5)K1. Our results completely solve a problem
raised by Hilton, Johnson andWantland [A.J.W. Hilton, P.D. Johnson, Jr., E. B. Wantland, The
Hall number of a simple graph, Congr. Numer. 121 (1996), 161–182, Problem 7] in terms
of the number of vertices, and strongly improve some estimates due to Hilton and Johnson
[A.J.W. Hilton, P.D. Johnson, Jr., The Hall number, the Hall index, and the total Hall number
of a graph, Discrete Appl. Math. 94 (1999), 227–245] as a function of maximum degree.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a finite simple graph, with vertex set V = {v1, . . . , vn} (n ≥ 1) and edge set E. Assume further that
a collection L = {L(v1), . . . , L(vn)} of finite sets is given; here each ‘list’ L(vi) will be viewed as the set of ‘allowed colors’
for vertex vi. We shall assume, without loss of generality, that every list L(vi) is a subset of N, the set of natural numbers. If
|L(vi)| ≥ k holds for all lists inL, where k is a positive integer, then we callL a k-assignment on G.
Graph Gwith a givenL is list colorable, orL-colorable, if there exists a vertex coloring ϕ : V → N such that ϕ(vi) ∈ L(vi)

for every i and ϕ(vi) 6= ϕ(vj) for every pair vivj ∈ E of adjacent vertices. That is, ϕ has to be a proper vertex coloring that
respects the list assignmentL. The choice number, denoted by χ

`
(G), is the smallest integer k such that G isL-colorable for

every k-assignmentL. It was known already from the very first papers [1,15] on the subject that the choice number can be
much larger than the chromatic number (there exist bipartite graphs with arbitrarily large χ

`
). An overview of results and

many references can be found in the subsequent surveys [12,11].
Although the choice number of Kn (the complete graph of order n) is equal to the number n of vertices, the colorability of

Kn with lists of any (possibly small and unequal) size is well understood. As a matter of fact, a direct consequence of Hall’s
Marriage Theorem [6] is that Kn is L-colorable if and only if, for every k = 1, 2, . . . , n, the union of any k lists contains at
least k colors. This observation leads to the following two interesting notions, introduced by Hilton and Johnson in [7].

∗ Corresponding address: Computer and Automation Institute, Hungarian Academy of Sciences, H-1111 Budapest, Kende u. 13–17, Hungary.
E-mail address: tuza@sztaki.hu.

0012-365X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2009.03.025

http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:tuza@sztaki.hu
http://dx.doi.org/10.1016/j.disc.2009.03.025


462 Z. Tuza / Discrete Mathematics 310 (2010) 461–470

Hall condition. For any vertex subset X ⊆ V and any color c , let α(X, c)—or α(X, c,L) if L has to be emphasized, too—
denote the independence number of the subgraph of G induced by those vertices vi ∈ X whose lists L(vi) contain c. We say
that G satisfies the Hall Condition if∑

c∈N

α(X, c) ≥ |X | ∀ X ⊆ V . (HC)

This condition is necessary forL-colorability, but not sufficient in general. The smallest counterexamples are C4 (the 4-cycle)
and K4− e (one edge deleted from K4). An uncolorableL satisfying (HC) can be created for both of these graphs by assigning
the lists {1}, {1, 2}, {1, 3}, {2, 3} so that the vertices with lists {1, 2} and {1, 3} are nonadjacent.
Hall number. The Hall number of graph G, denoted by h(G), is the smallest positive integer k such that G isL-colorable for
every k-assignment satisfying the Hall Condition (HC). In other words, h(G) is the smallest lower bound k ∈ N on the list
sizes that makes (HC) sufficient for the list-colorability of G. It follows immediately from the definitions that h(G) ≤ χ

`
(G)

holds for every G.
Vertex deletion cannot make the Hall number increase, but simple examples show that edge deletion may yield a

subgraph with a larger Hall number; for instance, h(K4) = 1 while h(K4 − e) = 2. In studying these operations, Hilton,
Johnson andWantland [9] raised the following problems: Howmuch can h(G) decrease if a vertex is deleted, or a new edge
is inserted ? (For the latter, originally only theweaker questionwas raisedwhether the difference between h(G) and h(G−e)
can be greater than one.)
As a partial answer, Hilton and Johnson [8] proved the following lower bounds, in terms of the maximum vertex degree

∆(G) in G.
• For every integer k ≥ 3, there exists a graph G with ∆(G) ∈ {k, k + 1, k + 2} containing a vertex v such that
h(G)− h(G− v) ≥ k/3.
• For every integer k ≥ 3, there exists a graph Gwith∆(G) = k+ 2 containing an edge e such that h(G− e)− h(G) ≥ k/5.

It was left as an open problem to investigate the tightness of these lower bounds.
In this paper, a complete solution of the analogous problem in terms of the number of vertices is derived from the following

result. It will imply improved estimates for the two problems above, too.

Theorem 1. Let n ∈ N, n ≥ 3, and let G be a graph on n vertices. Then the following are valid.
(i) h(G) ≤ n− 2.
(ii) If n ≥ 6, then h(G) = n − 2 holds if and only if the complement of G is either K2 or P4 or C5 (plus n − 2, n − 4, or n − 5
isolated vertices).

(iii) The equality h(Kn − e) = n− 2 remains valid for n = 3, 4, 5, too.

In fact, for 3 ≤ n ≤ 5, the family of graphs with n vertices and Hall number n− 2 differs from the one described above.
It can be listed as follows.
• n = 3: all graphs.
• n = 4: C4 and K4 − e.
• n = 5: the graphs whose complement is one of the following graphs: K2, 2K2, P3, P4, K2 ∪ P3, C3 (plus 3, 1, 2, 1, 0, or 2
isolated vertices, respectively).

Recalling that all complete graphs have Hall number 1, and observing that the deletion of a vertex of degree n− 2 from
Kn − e yields Kn−1, the following tight upper bound is obtained:

Corollary 1. If G has n ≥ 4 vertices, then deleting an edge or a vertex from G can increase or decrease, respectively, h(G) by at
most n− 3. This upper bound is tight for both operations, as shown by the sequence

Kn → Kn − e→ Kn−1.

It also turns out (see Section 5) that the sequence exhibited above is the only one verifying the tightness of the upper
bound n − 3 if n ≥ 6. Moreover, as both Kn and Kn − e have maximum degree n − 1 for n ≥ 3, we obtain the following
improvements in Hilton and Johnson’s estimates, showing that the corresponding values k/3 and k/5 can be replaced with
k− 2.

Corollary 2. Let k ≥ 3 be any integer.
(i) There exists a graph G with∆(G) = k and containing a vertex v such that h(G)− h(G− v) = k− 2.
(ii) There exists a graph G with∆(G) = k and containing an edge e such that h(G− e)− h(G) = k− 2.

Theorem1 characterizes the graphswith largest Hall number. From the other end, itwas proved byHilton and Johnson [7]
and independently by Gröflin [5] that a graph G has h(G) = 1 if and only if every block of G is a complete graph. The case
of h(G) = 2 is more complicated; its characterization was completed in [3], using several results from the earlier papers
[2,10], too.
Related preliminary results, involving parts (i) and (iii) of Theorem 1 and Corollaries 1 and 2, were included in our

unpublished manuscript [13] and in the recent electronic publication [14]. Those works contain some ingredients of the
present proof techniques, too.
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