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a b s t r a c t

In this paper we derive an enumeration formula for the number of hypermaps of a given
genus g and given number of darts n in terms of the numbers of rooted hypermaps of
genus γ ≤ g with m darts, where m|n. Explicit expressions for the number of rooted
hypermaps of genus g with n darts were derived by Walsh [T.R.S. Walsh, Hypermaps
versus bipartite maps, J. Combin. Theory B 18 (2) (1975) 155–163] for g = 0, and by
Arquès [D. Arquès, Hypercartes pointées sur le tore: Décompositions et dénombrements, J.
Combin. Theory B 43 (1987) 275–286] for g = 1. We apply our general counting formula
to derive explicit expressions for the number of unrooted spherical hypermaps and for
the number of unrooted toroidal hypermaps with given number of darts. We note that in
this paper isomorphism classes of hypermaps of genus g ≥ 0 are distinguished up to the
action of orientation-preserving hypermap isomorphisms. The enumeration results can be
expressed in terms of Fuchsian groups.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

An oriented map is a 2-cell decomposition of a closed orientable surface with a fixed global orientation. Generally,
maps can be described combinatorially via graph embeddings. Oriented hypermaps are generalisations of oriented
maps. While maps are 2-cell embeddings of graphs, hypermaps can be viewed as embeddings of hypergraphs in closed
orientable surfaces. Such a model was investigated by Walsh in [29], where the underlying hypergraph is described via the
corresponding 2-coloured bipartite graph B, and the hypermap itself is determined by a 2-cell embedding B→ S.
By amapwemean a 2-cell decomposition of a compact connected surface. Enumeration ofmaps on surfaces has attracted

a lot of attention during the past decades [20]. Generally, problems of the following sort are considered:

Problem 1. Howmany isomorphism classes of maps with a given propertyP and a given number of edges (vertices, faces)
are there?

The beginnings of the enumerative theory of maps are closely related to the enumeration of plane trees considered in
1960s by Tutte [26] and Harary, Prins and Tutte [7] (see [8,21] as well). Later many other distinguished classes of maps
including triangulations, outerplanar, cubic, Eulerian, nonseparable, simple, loopless, two-face maps etc. were considered.
Although there aremore than 100 published papers onmap enumerationmost of them deal with the enumeration of rooted
maps with a given property. In particular, there is a lack of results on enumeration of unrooted maps of genus ≥ 1. Most
of the results on map enumeration in the unrooted case are restricted to planar maps [14,15,30,31,16]. A recent paper [23]
presents a breakthrough in the enumeration problem for unrooted maps of genus ≥ 1. In the present paper we apply the
methods employed in [23] to solve an analogous problem for hypermaps.
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The problem considered in this paper reads as follows.

Problem 2. What is the number Hg(n) of isomorphism classes of oriented unrooted hypermaps of given genus g and given
number of darts n?

An oriented map is called rooted if one of the darts (arcs) is distinguished as a root. By a dart of a map we mean an edge
endowed with one of the two possible orientations. Isomorphisms between oriented rooted maps take root onto root. A
rooted variant of Problem 2 follows.

Problem 3. What is the number hg(n) of isomorphism classes of oriented rooted hypermaps of given genus g and given
number of darts n?

Problem 3 was solved by Walsh in 1975 [29] for g = 0, i.e. for the spherical case. A corresponding case of Problem 2 for
g = 0, was settled by Bousquet-Mélou and Schaeffer in terms of planar 2-constellations in 2000 [3]. As concerns genera
g ≥ 1, the solution of Problem 3 was obtained by Arqués for g = 1 [2], the other instances of Problem 3 remain unsettled.
The aim of the present paper is to show that Problem 2 can be reduced to Problem 3. More precisely, we prove that

the numbers of unrooted oriented hypermaps with n darts and given genus g can be determined explicitly whenever the
numbers hγ (m) are known for each m|n and γ ≤ g (see Theorem 3.5 for details). Since hγ (m) are known for γ = 0, 1 we
are able to determine the numbers H0(n) and H1(n) in terms of arithmetic functions depending on n. All the derived results
can be expressed in group-theoretical language. Namely, the numbers hg(n) determine the numbers of subgroups of index
n and genus g of a free group of rank two, seen as the universal triangle group ∆+(∞,∞,∞) = 〈x, y, z|xyz = 1〉; while
Hg(n) give the numbers of conjugacy classes of such subgroups. Note that conjugacy classes of subgroups of free groups of
given index were enumerated by Liskovets [17] (see [13,25] as well).

2. Hypermaps on orbifolds

Hypermaps on surfaces. An oriented combinatorial hypermap is a triple H = (D; R, L), where D is a finite set of darts
(called brins, blades, bits as well) and R, L are permutations of D such that 〈R, L〉 is transitive on D. The orbits of R are called
hypervertices, the orbits of L are called hyperedges and the orbits of RL are called hyperfaces. The degree of a hypervertex
(hyperedge, hyperface) is the size of the respective orbit.
Let |D| = n. Denote by v, e and f the numbers of hypervertices, hyperedges and hyperfaces. Then the genus g of H is

given by the Euler–Poincare formula as follows

v + e+ f − n = 2− 2g.

Given hypermaps Hi = (Di; Ri, Li), i = 1, 2 a mapping ψ : D1 → D2 such that R2ψ = ψR1 and L2ψ = ψL1 is called
a morphism (or a covering) H1 → H2. Note that each morphism between hypermaps is by definition an epimorphism. If
ψ : H1 → H2 is a bijection,ψ is an isomorphism. The isomorphismsH → H form a group Aut(H) of automorphisms ofH .
It is easily seen that Aut(H) acts semiregularly on D; equivalently, the stabiliser of a dart is trivial. A hypermapH is called
rooted if one element x of D is chosen to be a root. Morphisms between rooted hypermaps take roots onto roots. It follows
that a rooted hypermap admits no non-trivial automorphisms.
By a surface we mean a connected, orientable surface without boundary. A topological map is a 2-cell decomposition

of a surface. Usually, maps on surfaces are described as 2-cell embeddings of graphs. Oriented combinatorial maps are
hypermaps (D; R, L) such that L is a fixed-point-free involution. Walsh observed that oriented hypermaps can be viewed
as particular maps. Namely, he proved a one-to-one correspondence [29, Lemma 1] between hypermaps and the set of
(oriented) 2-coloured bipartite maps. That means that one of the two global orientations of the underlying surface is fixed,
and moreover, we assume that a colouring of vertices, say by black and white colours, is preserved by morphisms between
maps. The correspondence is given as follows. LetM be 2-coloured bipartite map on an orientable surface S with a fixed
global orientation. We set D to be the set of edges ofM. The orientation of S induces at each black vertex v ofM a cyclic
permutation Rv of edges incident with v. This way a permutation R =

∏
Rv of D is defined. Similarly, the orientation of

S determines at each white vertex u a cyclic permutation Lu. Set L =
∏
Lu. Hence we have a unique hypermap (D; R, L)

corresponding toM. Conversely, given hypermap (D; R, L) we first define a bipartite 2-coloured graph X whose edges are
elements of D, black vertices are orbits of R and white vertices are orbits of L. An edge x ∈ D is incident to a (black or white)
vertex u if x ∈ u. The permutations R and L induce local rotations of arcs outgoing fromblack andwhite vertices, respectively.
It is well known (see Gross and Tucker [6, Section 3.2]) that the system of rotations determines a 2-cell embedding of X into
an orientable surface.
Similarly as above, an oriented 2-coloured bipartite map is called rooted if one of the edges is selected to be a root.

Morphisms between rooted 2-coloured bipartite maps take a root onto a root.
There is yet another way to describe hypermaps. LetH = (D; R, L) be a hypermap. Clearly, the permutation group 〈R, L〉

is an epimorphic image of the free product ∆+ = C ∗ C ∼= 〈ρ〉 ∗ 〈λ〉 of two infinite cyclic groups. The group ∆+ acts
on D via the epimorphism taking ρ 7→ R and λ 7→ L. Thus by using some standard results in permutation group theory
each hypermap can be described by a subgroup F ≤ ∆+ [11,27,28,5]. The subgroup F , called a hypermap subgroup, can be
identified with a stabiliser of a dart in the action of ∆+ on D. Since the action of ∆+ on D is transitive, the number of darts
|D| = n coincides with index [∆+ : F ] of F in ∆+. Given F ≤ ∆+ the corresponding hypermap can be constructed as an
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