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a b s t r a c t

Here we prove a stability version of a Ramsey-type Theorem for paths. Thus in any
2-coloring of the edges of the complete graph Kn we can either find a monochromatic path
substantially longer than 2n/3, or the coloring is close to the extremal coloring.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The vertex-set and the edge-set of the graphG is denoted by V (G) and E(G). Kn is the complete graph on n vertices, Kr+1(t)
is the complete (r+1)-partite graphwhere each class contains t vertices and K2(t) = K(t, t) is the complete bipartite graph
between two vertex classes of size t . We denote by (A, B, E) a bipartite graph G = (V , E), where V = A+ B, and E ⊂ A× B.
For a graph G and a subset U of its vertices, G|U is the restriction of G to U . The set of neighbors of v ∈ V is N(v). Hence the
size of N(v) is |N(v)| = deg(v) = degG(v), the degree of v. The minimum degree is denoted by δ(G) and the maximum
degree by∆(G) in a graphG.When A, B are subsets of V (G), we denote by e(A, B) the number of edges ofGwith one endpoint
in A and the other in B. In particular, we write deg(v,U) = e({v},U) for the number of edges from v to U . A graph Gn on n
vertices is γ -dense if it has at least γ

( n
2

)
edges. A bipartite graph G(k, l) is γ -dense if it contains at least γ kl edges.

For graphs G1,G2, . . . ,Gr , the Ramsey number R(G1,G2, . . . ,Gr) is the smallest positive integer n such that if the edges of
a complete graphKn are partitioned into r disjoint color classes giving r graphsH1,H2, . . . ,Hr , then at least oneHi (1 ≤ i ≤ r)
has a subgraph isomorphic to Gi. The existence of such a positive integer is guaranteed by Ramsey’s classical result [12].
The number R(G1,G2, . . . ,Gr) is called the Ramsey number for the graphs G1,G2, . . . ,Gr . There is very little known about
R(G1,G2, . . . ,Gr) even for very special graphs (see e.g. [4] or [11]). For r = 2 a theorem of Gerencsér and Gyárfás [3] states
that

R(Pn, Pn) =
⌊
3n− 2
2

⌋
. (1)

In this paperwe prove a stability version of this theorem. Since this is whatwe needed in a recent application [6], actually
we prove the result in a slightly more general context; we work with 2-edge multicolorings (G1,G2) of a graph G. Here
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multicoloring means that the edges can receive more than one color, i.e. the graphs Gi are not necessarily edge disjoint. The
subgraph colored with color i only is denoted by G∗i , i.e.

G∗1 = G1 \ G2, G∗2 = G2 \ G1.
In order to state the theorem we need to define a relaxed version of the extremal coloring for (1).
Extremal Coloring (with parameter α): There exists a partition V (G) = A ∪ B such that
• |A| ≥ (2/3− α)|V (G)|, |B| ≥ (1/3− α)|V (G)|.
• The graph G∗1|A is (1−α)-dense and the bipartite graph G

∗

2|A×B is (1−α)-dense. (Note that we have no restriction on the
coloring inside the smaller set.)

Then the following stability version of the Gerencsér–Gyárfás Theorem claims that we can either find a monochromatic
path substantially longer than 2n/3, or the coloring is close to the extremal coloring.

Theorem 1.1. For every α > 0 there exists a positive real η (0 < η � α � 1 where� means sufficiently smaller) and a
positive integer n0 such that for every n ≥ n0 the following holds: if the edges of the complete graph Kn are 2-multicolored then
we have one of the following two cases.
• Case 1: Kn contains a monochromatic path P of length at least ( 23 + η)n.
• Case 2: This is an Extremal Coloring (EC) with parameter α.

We remark that while for some classical density results the corresponding stability versions are well-known (see [1]),
stability questions in Ramsey problems only emerged recently (see [5,7,10]).

2. Tools

Theorem1.1 can also be proved from theRegularity Lemma [13], however, hereweuse amore elementary approachusing
only the Kővári–Sós–Turán bound [8]. This is part of a new direction to ‘‘de-regularize’’ some proofs, namely to replace the
Regularity Lemma with more elementary classical extremal graph theoretic results such as the Kővári–Sós–Turán bound
(see e.g. [9]).

Lemma 2.1 (Theorem 3.1 on page 328 in [1]). There is an absolute constant β > 0 such that if 0 < ε < 1/r and we have a
graph G with

|E(G)| ≥
(
1−

1
r
+ ε

)
n2

2

then G contains a Kr+1(t), where

t =
⌊
β log n
r log 1/ε

⌋
.

For r = 1 this is essentially the Kővári–Sós–Turán bound [8] and for general r this was proved by Bollobás, Erdős and
Simonovits [2]. Here we will use the result only for r = 1.

3. Outline of the proof

We will need the following definition. Given a graph G and a positive integer k, we say that a subsetW of the vertex set
V (G) is k-well-connected if for any two vertices u, v ∈ W there are at least k internally vertex disjoint paths of length at most
three connecting u and v in G (note that these paths might leaveW ). We will use this definition with k = ηn, in this case we
just say shortly thatW is well-connected.
We will follow a similar outline as in applications of the Regularity Lemma. However, a regular pair will be replaced

with a complete balanced bipartite graph K(t, t)with t ≥ c log n for some constant c (thus the size of the pair is somewhat
smaller but this is still good enough for our purposes). Then amonochromatic connectedmatching in the reduced graph (the
usual tool in these types of proofs using the Regularity Lemma) will be replaced with a set of vertex disjoint monochromatic
complete balanced bipartite graphs Ki(ti, ti), 1 ≤ i ≤ s with ti ≥ c log n, 1 ≤ i ≤ s for some constant c. Moreover, these
bipartite graphs are all contained in a setW that is well-connected in this color. Let us call a set of bipartite graphs like this
a monochromatic well-connected complete balanced bipartite graph cover (we are covering vertices here). The size of this
cover is the total number of vertices in the union of these complete bipartite graphs.
Then Theorem 1.1 will follow from the following lemma.

Lemma 3.1. For every α > 0 there exist a positive real η (0 < η � α � 1 where�means sufficiently smaller) and a positive
integer n0 such that for every n ≥ n0 the following holds: if the edges of the complete graph Kn are 2-multicolored then we have
one of the following two cases.
• Case 1: Kn contains a monochromatic well-connected complete balanced bipartite graph cover of size at least ( 23 + 2η)n.
• Case 2: This is an Extremal Coloring (EC) with parameter α.
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