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a b s t r a c t

The k-restricted edge connectivity is a more refined network reliability index than edge
connectivity. In this paper, we study the undirected Kautz graph UK(d, n), an important
model of networks, give an upper bound on the k-restricted edge connectivity of UK(d, n)
for some small k and determine the 4-restricted edge connectivity of UK(2, n).
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1. Introduction

For graph-theoretical terminology and notation not defined here we follow [4]. It is well known that the underlying
topology of a processor interconnection network or a communications network can be modeled by a graph G = (V , E),
where the vertex set V corresponds to processors or switching elements and the edge set E corresponds to communication
links. The Kautz graph [3,8,15] has beenwidely used in the design and analysis of interconnection networks. It can be defined
as follows. The Kautz digraph, denoted by K(d, n), where d, n are two given integers, d ≥ 1, n ≥ 2, has the vertex set
V = {x1x2 · · · xn : xi ∈ {0, 1, . . . , d}, xi+1 6= xi, i = 1, 2, . . . , n − 1}, and the arc set A, where for every pair of vertices
x, y ∈ V , if x = x1x2 · · · xn, then (x, y) ∈ A ⇔ y = x2x3 · · · xn+1, xn+1 ∈ {0, 1, . . . , d} − {xn}. Define K(d, 1) as a complete
digraph of order (d+ 1). Clearly, K(d, n) is d-regular, i.e., for any x ∈ V (K(d, n)), both its out-degree d+(x) and its in-degree
d−(x) are d. The undirected Kautz graph, denoted by UK(d, n), is obtained from K(d, n) by deleting the orientation of all arcs
and keeping one edge of a pair of multiple edges.
As amore refined index than the edge connectivity, the k-restricted edge connectivitywas proposed in [5,6]. A set of edges

S in a connected graph G is called a k-restricted edge cut if G− S is disconnected and every component of G− S has at least
k vertices. The k-restricted edge connectivity of G, denoted by λk(G), is defined as the cardinality of a minimum k-restricted
edge cut. A connected graph G is said to be λk-connected if λk(G) exists. It is easy to see that if G is λk-connected for k ≥ 2,
then G is also λk−1-connected and λk−1(G) ≤ λk(G). In view of recent studies on k-restricted edge connectivity, it seems
that the larger the λk(G), themore reliable the network [11,10,16]. So, we expect λk(G) to be as large as possible. Clearly, the
optimization of λk(G) requires an upper bound first. For subsets U and U ′ of V (G), we denote by [U,U ′] the set of edges with
one end inU and the other inU ′. For any positive integer k, let ξk(G) = min{|[X, X]| : X ⊂ V (G), |X | = k,G[X] is connected},
where X = V (G) \ X and G[X] is the subgraph of G induced by X . It has been shown that λk(G) ≤ ξk(G) holds for many
graphs [5,12,19]. A connected graph G for which λk(G) ≤ ξk(G) holds is called a λk-optimal graph if λk(G) = ξk(G). Sufficient
conditions for graphs to be λk-connected or λk-optimal were given by several authors [5,6,12,19,1,2,9,18,20]. In particular,
the λk-optimality of undirected Kautz graphs has attractedmuch attention recently. In 2004, Ou and Zhang [14] proved that
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for n ≥ 3, UK(2, n) is λ2-optimal. In the same year, Fan [7] proved that for n ≥ 2, UK(3, n) is λ2-optimal. In 2005, Wang and
Lin [17] showed that for d ≥ 3, n ≥ 2, UK(d, n) is λ2-optimal. In 2007, Ou et al. [13] showed the following.

Proposition 1.1 ([13]). The undirected Kautz graphUK(2, n) isλ3-optimalwhenn ≥ 3, that is,λ3(UK(2, n)) = ξ3(UK(2, n)) =
6.

In this paper, we give an upper bound on λk(UK(d, n)) for some small k and show that UK(2, n) is λ4-optimal when
n ≥ 4.

2. Preliminaries

We begin with the basic structure and some useful properties of Kautz graphs. Clearly, |V (UK(d, n))| = dn + dn−1. A
vertex x = x1x2 · · · xn of UK(d, n) is called a binary vertex if x1 = x3 = · · · = a 6= b = x2 = x4 = · · ·. Two binary vertices
x = x1x2 · · · xn, y = y1y2 · · · yn are said to be symmetric if x1 = y2 and x2 = y1. It is easy to see that x, y are symmetric
binary vertices if and only if xyx is a directed 2-cycle in K(d, n). Combining this with the definition of UK(d, n), we have the
following.

Lemma 2.1. For d ≥ 2, n ≥ 2, UK(d, n) has the minimum degree 2d−1, while the maximum degree is 2d for n ≥ 3 and 2d−1
for n = 2. Furthermore, the degree d(x) of the vertex x is 2d− 1 if and only if x is a binary vertex.

For d ≥ 2, n ≥ 3, a vertex x = x1x2 · · · xn of UK(d, n) is called a trinary vertex if there exist distinct a, b, c ∈ {0, 1, . . . , d}
such that x1 = x4 = · · · = a, x2 = x5 = · · · = b, x3 = x6 = · · · = c . Two trinary vertices x = x1x2 · · · xn, y = y1y2 · · · yn
are said to be consistent if either y1 = x2, y2 = x3, y3 = x1 or x1 = y2, x2 = y3, x3 = y1.
For a vertex x of UK(d, n), denote by N+(x) and N−(x) the out-neighbourhood and in-neighbourhood of x in K(d, n),

respectively. For three distinct vertices x, y, z of UK(d, n), xyzx is called a triangle of UK(d, n) if xy, yz, zx are edges of
UK(d, n).

Lemma 2.2. For d ≥ 2, n ≥ 3, xyzx is a triangle of UK(d, n) if and only if x, y, z are pairwise consistent trinary vertices.
Proof. Suppose that x = x1x2 · · · xn, y = y1y2 · · · yn, z = z1z2 · · · zn are pairwise consistent trinary vertices of UK(d, n).
Since both x, y and x, z are consistent, without loss of generality, we can assume that y1 = x2, y2 = x3, y3 = x1 and
x1 = z2, x2 = z3, x3 = z1. Combining this with the fact that x, y, z are trinary, it follows that yi = xi+1, zi = yi+1, xi = zi+1
for i = 1, 2, . . . , n− 1. By definition, xyzx is a directed triangle of K(d, n) and so a triangle of UK(d, n).
Now suppose conversely that xyzx is a triangle in UK(d, n). Without loss of generality, assume y ∈ N+(x). Since any two

vertices inN+(x) are not adjacent and y, z are adjacent, we have z ∈ N−(x), that is, x ∈ N+(z). Similarly, we have y ∈ N−(z).
It follows that xyzx is a directed triangle in K(d, n). By the definition of K(d, n), we have that x, y, z are pairwise consistent
trinary vertices. �

For d ≥ 2, n ≥ 3, let x = x1x2 · · · xn be a vertex of UK(d, n), and let x(1) = x1x2 · · · xn−1, x(2) = x2x3 · · · xn. Then x(1), x(2)
are vertices of UK(d, n− 1) and x(1)x(2) is an edge of UK(d, n− 1). For a path P = u0u1u2 · · · uk of UK(d, n), denote by G(P)
the subgraph of UK(d, n − 1) with vertex set ∪ki=0{u

(1)
i , u

(2)
i } and edge set ∪

k
i=0{u

(1)
i u

(2)
i }. Since ui and ui+1 are adjacent, we

have {u(1)i , u
(2)
i } ∩ {u

(1)
i+1, u

(2)
i+1} 6= ∅, i = 0, 1, . . . , k− 1.

Lemma 2.3. For d ≥ 2, n ≥ 3, let P = u0u1 · · · uk be a path of UK(d, n). Then G(P) is a connected subgraph of UK(d, n − 1)
with at most k+ 1 edges.
Proof. By induction on the length k of P . This is clearly true for k = 0. Suppose, then, that the lemma holds for any path
of UK(d, n) with length less than k, where k ≥ 1. Since {u(1)k−1, u

(2)
k−1} ∩ {u

(1)
k , u

(2)
k } 6= ∅, we can assume, without loss of

generality, u(2)k−1 = u
(1)
k . Let P

′
= u0u1 · · · uk−1. Then V (G(P)) = V (G(P ′)) ∪ {u

(2)
k } and E(G(P)) = E(G(P

′)) ∪ {u(2)k−1u
(2)
k }.

By the induction hypothesis, G(P ′) is a connected subgraph of UK(d, n − 1) with at most k edges. It follows that G(P) is a
connected subgraph of UK(d, n− 1)with at most k+ 1 edges. The proof is complete. �

Lemma 2.4. (a) For d ≥ 2, n ≥ 2, let x, y be two binary vertices of UK(d, n). If they are not symmetric, then the distance
between them is at least n− 1, that is, d(x, y) ≥ n− 1.
(b) For d ≥ 2, n ≥ 3, let x, y be two trinary vertices of UK(d, n). If they are not consistent, then d(x, y) ≥ n− 1.

Proof. First, we prove Part (a). Clearly, Part (a) is true for n = 2. Suppose Part (a) fails and we take the minimal n ≥ 3 for
which there are two non-symmetric binary vertices x, y in UK(d, n)with d(x, y) = m ≤ n− 2. Since x, y are not symmetric,
we have m ≥ 2. Let P = u0u1 · · · um be a shortest path from x to y, where u0 = x, um = y, and let Q = u1 · · · um−1. Since
u0u1, um−1um ∈ E(UK(d, n)), it follows that {u

(1)
i , u

(2)
i } ∩ {u

(1)
i+1, u

(2)
i+1} 6= ∅, i = 0,m− 1. So, we can assume, without loss of

generality, that u(2)0 ∈ {u
(1)
1 , u

(2)
1 }, u

(1)
m ∈ {u

(1)
m−1, u

(2)
m−1}, which implies that u

(2)
0 , u

(1)
m are two vertices in G(Q ). By Lemma 2.3,

G(Q ) is a connected subgraph of UK(d, n− 1)with at mostm− 1 ≤ n− 3 edges. It follows that the distance between u(2)0
and u(1)m is at most n− 3. On the other hand, since u0, um are two non-symmetric binary vertices in UK(d, n), it follows that
u(2)0 , u

(1)
m are two non-symmetric binary vertices in UK(d, n− 1). By the minimality of n, d(u

(2)
0 , u

(1)
m ) ≥ (n− 1)− 1 = n− 2,

a contradiction completing the proof of Part (a). Similarly, we can prove Part (b). �
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