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a b s t r a c t

We assign to each pair of positive integers n and k ≥ 2 a digraph G(n, k) whose set of
vertices is H = {0, 1, . . . , n−1} and for which there is a directed edge from a ∈ H to b ∈ H if
ak ≡ b (mod n). The digraph G(n, k) is symmetric of order M if its set of components can be
partitioned into subsets of size M with each subset containing M isomorphic components.
We generalize earlier theorems by Szalay, Carlip, and Mincheva on symmetric digraphs
G(n, 2) of order 2 to symmetric digraphs G(n, k) of order M when k ≥ 2 is arbitrary.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

This paper extends the results given in the works [4,6,9], which provide an interesting connection between number
theory, graph theory and group theory. In the papers [6,7], we investigated properties of the iteration digraph representing
a dynamical system occurring in number theory.

For n ≥ 1 let

H = {0, 1, . . . , n− 1}

and let f be a map of H into itself. The iteration digraph of f is a directed graph whose vertices are elements of H and such
that there exists exactly one directed edge from x to f (x) for all x ∈ H. For a fixed integer k ≥ 2 and for each x ∈ H let f (x) be
the remainder of xk modulo n, i.e.,

f (x) ∈ H and xk ≡ f (x) (mod n). (1.1)

From here on, whenever we refer to the iteration digraph of f , we assume that the mapping f is as given in (1.1). Each pair
of natural numbers n and k ≥ 2 has a specific iteration digraph corresponding to it.

We identify the vertex a of H with its residue modulo n. For brevity we will make statements such as gcd(a, n) = 1,
treating the vertex a as a number. Moreover, when we refer, for instance, to the vertex ak, we identify it with the remainder
f (a) ∈ H given by (1.1). For particular values of n and k, we denote the iteration digraph of f by G(n, k), see Fig. 1.

Let ω(n) denote the number of distinct primes dividing n ≥ 2 and let the prime power factorization of n be given by

n =
r∏

i=1
pαii , (1.2)

where p1 < p2 < · · · < pr are primes and αi > 0, i.e., r = ω(n). For n = 1, we set ω(1) = 0.
A component of the iteration digraph is a maximal connected subgraph of the associated nondirected graph.
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Fig. 1. The iteration digraph G(8, 2).

Fig. 2. The symmetric iteration digraph G(39, 3) of order 3.

The indegree of a vertex a ∈ H of G(n, k), denoted by indegn(a), is the number of directed edges coming into a, and the
outdegree of a is the number of directed edges leaving the vertex a. We frequently will simply write indeg(a) when it is
understood that a is a vertex in G(n, k). By the definition of f , the outdegree of each vertex of G(n, k) is equal to 1. It is
obvious that G(n, k) with n vertices also has exactly n directed edges. Thus, if bi, i = 1, 2, . . . , q, denote all the vertices of
G(n, k) having positive indegree, then

q∑
i=1

bi = n. (1.3)

It is clear that each component has a unique cycle, since each vertex of the component has outdegree 1 and the component
has only a finite number of vertices. It is also evident that cycle vertices have positive indegree. Cycles of length 1 are called
fixed points.

Note that 0 and 1 are always fixed points of G(n, k). Cycles of length t are called t-cycles. Let At(G(n, k)) denote the number
of t-cycles in G(n, k). Attached to each cycle vertex c of G(n, k) is a tree T(c) whose root is c and whose additional vertices
are the noncycle vertices b for which bk

i
≡ c (mod n) for some i ∈ N, but bk

i−1 is not congruent to a cycle vertex modulo n.
Let J(n, k) be a component in G(n, k) and let c be a cycle vertex in J(n, k). It is evident that b is a vertex in J(n, k) if and only if
bk

h
≡ c (mod n) for some positive integer h. The height of a vertex b in G(n, k) is the least nonnegative integer i such that bki

is congruent modulo n to a cycle vertex in G(n, k). Note that cycle vertices have height equal to 0.

Definition 1.1. Let M ≥ 2 be an integer. The digraph G(n, k) is said to be symmetric of order M if its set of components can
be partitioned into subsets of size M, each containing M isomorphic components.

Fig. 2 shows a symmetric digraph G(39, 3) of order 3, while Fig. 3 exhibits a symmetric digraph of order 5. In Szalay [8],
it was shown that G(n, 2) is symmetric of order 2 if 2 ‖ n or 22

‖ n, where 2i
‖ n if 2i

| n, but 2i+1 - n. In [1], it was also proved
that G(n, 2) is symmetric of order 2 if n = 16q, where q is a Fermat prime, that is, a prime q = 22m

+ 1 for some nonnegative
integer m (see [3] for properties of Fermat primes). In this paper, we will generalize these results by determining symmetric
digraphs G(n, k) of order M ≥ 2 for all integers k ≥ 2.

The digraph in Fig. 1 is not symmetric of order M for any M ≥ 2 while the digraphs in Figs. 4–6 are each symmetric of
order 2.

Further, we specify two particular subdigraphs of G(n, k). Let G1(n, k) be the induced subdigraph of G(n, k) on the set of
vertices which are coprime to n and G2(n, k) be the induced subdigraph on the remaining vertices not coprime with n. We
observe that G1(n, k) and G2(n, k) are disjoint and that G(n, k) = G1(n, k)∪G2(n, k), that is, no edge goes between G1(n, k) and
G2(n, k). Since gcd(a, n) = 1 if and only if gcd(ak, n) = 1, it follows that both G1(n, k) and G2(n, k) are unions of components
of G(n, k). For example, the second component of Fig. 6 is G1(12, 2) whereas the remaining three components make up
G2(12, 2). It is clear that 0 is always a fixed point of G2(n, k). If n > 1, then 1 and n− 1 are always vertices of G1(n, k).
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