On zero-sum partitions and anti-magic trees

Gil Kaplan*, Arieh Lev, Yehuda Roditty
School of Computer Sciences, The Academic College of Tel-Aviv-Yaffo, 2 Rabenu Yeruham Street, Tel-Aviv, 61083, Israel

ARTICLE INFO

Article history:

Received 22 October 2007
Received in revised form 27 March 2008
Accepted 3 April 2008
Available online 19 May 2008

Keywords:

Zero-sum partitions
Anti-magic graphs

Abstract

We study zero-sum partitions of subsets in abelian groups, and apply the results to the study of anti-magic trees. Extension to the nonabelian case is also given.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study zero-sum partitions of subsets in groups, and apply the results to the study of anti-magic trees. Extension to the nonabelian case is also given. The notation used is standard, and we generally follow the notation in [8] and [9]. Abelian groups will be written additively and nonabelian groups will be written multiplicatively, but the identity element will be always denoted by 0 .

We start with some basic definitions.
Definition 1. Let G be an abelian group and let A be a finite subset of $G-\{0\}$, with $|A|=n$. We shall say that A has the zero-sum-partition property (ZSP-property) if for every partition $n=r_{1}+r_{2}+\cdots+r_{t}$ of n, with $r_{i} \geq 2$ for $1 \leq i \leq t$, there is a partition of A into pairwise disjoint subsets $A_{1}, A_{2}, \ldots, A_{t}$, such that $\left|A_{i}\right|=r_{i}$ and $\sum_{a \in A_{i}} a=0$ for $1 \leq i \leq t$. In case that G is finite, we shall say that G has the ZSP-property if $A=G-\{0\}$ has the ZSP-property.

Definition 2. A 2-tree T is a rooted tree, where each vertex $v \in V(T)$ which is not a leaf has at least two children.
Part (iii) of the following definition is the notion of anti-magic graphs that was introduced by Hartsfield and Ringel [5, pp. 109]. In our terminology, this notion is a special case of part (i) of the definition.

Definition 3. Let $H=(V, E)$ be a graph, where $|V|=n,|E|=m$. Let G be an abelian group and let A be a finite subset of $G-\{0\}$ with $|A|=m$. An A-labeling of H is a one-to-one mapping $l: E(H) \rightarrow A$. Given an A-labeling of H, the weight of a vertex $v \in V(G)$ is $w(v)=\sum_{u v \in E(H)} l(u v)$.
(i) We shall say that H is A-anti-magic if there is an A-labeling of H such that the weights $\{w(v) \mid v \in V(H)\}$ are all distinct.
(ii) In case that G is finite, we shall say that H is G-anti-magic if H is $(G-\{0\})$-anti-magic.
(iii) We shall say that H is anti-magic if H is A-anti-magic, where $A=\{1,2, \ldots, m\} \subset G=(\mathbf{Z},+)$.

Hartsfield and Ringel conjectured that every connected graph but K_{2} is anti-magic. This conjecture, as well as the conjecture (a particular case) that every tree but K_{2} is anti-magic, is still open. Recent results on anti-magic graphs may be found in [1]. We mention also the related problem of product anti-magic graphs, where the labeling is still by the elements

[^0]of the set $\{1,2, \ldots, n\}$, but the weight of a vertex is the product of the labels of its neighboring edges. Recent results on product anti-magic graphs may be found in [2,6,7]. Definition 3 above extends the notions of anti-magic graphs and product anti-magic graphs to A-anti-magic graphs, where A is a subset of any abelian group.

We review now our results, starting with the following theorem.
Theorem A. Let $n=r_{1}+r_{2}+\cdots+r_{t}$ be a partition of the positive integer n, where $r_{i} \geq 2$ for $i=1,2, \ldots, t$. Let $A=\{1,2, \ldots, n\}$. Then the set A can be partitioned into pairwise disjoint subsets $A_{1}, A_{2}, \ldots, A_{t}$ such that for every $1 \leq i \leq t,\left|A_{i}\right|=r_{i}$ with $\sum_{a \in A_{i}} a \equiv 0(\bmod n+1)$ if n is even and $\sum_{a \in A_{i}} a \equiv 0(\bmod n)$ if n is odd.

Let $G=\left(\mathbf{Z}_{n},+\right)$ be the additive group of integers modulo n. Using the result of Theorem A, we are able to determine whether G has the ZSP-property, to prove that every 2-tree is anti-magic, and to classify the G-anti-magic 2-trees, as given in Theorems B and C.

Theorem B. Let $n \geq 2$ be a natural number and let $G=\left(\mathbf{Z}_{n},+\right)$, the additive group of integers modulo n. Then G has the ZSPproperty if and only if n is odd.

Theorem C. Let $T=(V, E),|V|=n \geq 2$, be a 2 -tree. Then

1. T is anti-magic.
2. Let $G=\left(\mathbf{Z}_{n},+\right)$ be the additive group of integers modulo n. Then T is G-anti-magic if and only if n is odd.

Actually, the proof of Theorem C shows that the following simple proposition holds:
Proposition D. Let G be a finite abelian group which has the ZSP-property. Then every 2-tree on $|G|$ vertices is G-anti-magic.
The above proposition is very useful in studying G-anti-magic 2-trees, and will be used in what follows.
We turn now to the case where G is any finite abelian group. Recall that an involution in G is an element of G of order 2 . We conjecture the following:

Conjecture. Let T be a tree (not necessarily a 2-tree) and let G be a finite abelian group, where $|G|=|V(T)|$. Then

1. G has the ZSP-property if and only if either G is of odd order or G contains exactly 3 involutions.
2. T is G-anti-magic if and only if G is not a group with a unique involution.

One direction of the conjecture is not hard and is given in the following Theorem.
Theorem E. Let G be a finite abelian group of even order n, and assume that the number of involutions in G is different from 3. Then

1. G does not have the ZSP-property.
2. If G has a unique involution, then every tree on n vertices is not G-anti-magic.

We do not have the answer for the opposite direction, however, we shall give a proof of a particular case. Recall first, that a finite group is elementary abelian if it is the direct product of cyclic groups of order p, where p is a prime.

Theorem F. Let G be an elementary abelian group of order $n=p^{k}$, where p is a prime congruent to $1(\bmod 3)$. Then

1. G has the ZSP-property.
2. Every 2-tree on n vertices is G-anti-magic.

Using a similar proof to that of Theorem F we may extend the result of the theorem to some nonabelian groups. In order to do so we need to extend Definitions 1 and 3 to nonabelian groups. The extension is as follows:

1. In Definition 1 we allow the group to be nonabelian, but require that for each subset A_{i} in the partition of $A(1 \leq i \leq t)$, there will exist a permutation of the elements of $A_{i}: A_{i}=\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{s(i)}}\right\}\left(s(i)=\left|A_{i}\right|\right)$, such that $a_{i_{1}} a_{i_{2}} \cdots a_{i_{s(i)}}=0$.
2. Similarly, in Definition 3 we shall require that for $v_{i} \in V(T)(1 \leq i \leq n)$, there will exist a permutation of the labels of the edges adjacent to $v_{i}:\left\{g_{i_{1}}, g_{i_{2}}, \ldots, g_{i_{s(i)}}\right\}\left(s(i)=\operatorname{deg}\left(v_{i}\right)\right)$, such that the corresponding weights $w\left(v_{i}\right)=g_{i_{1}} g_{i_{2}} \ldots g_{i, s(i)}$ are all distinct.
For the following corollary, recall that a Frobenius group is a group having a subgroup H (called the Frobenius complement) such that $H \cap x^{-1} H x=\{0\}$ for every $x \in G-H$. It is known (see [8, 8.5.5]) that every Frobenius group G has a normal subgroup N (called the Frobenius kernel) such that $H \cap N=\{0\}$ and $G=H N$.

Corollary G. Let G be a Frobenius group of odd order n. Suppose that a complement of G and the kernel of G are either a cyclic group of order congruent to $1(\bmod 3)$ or an elementary abelian r-group, where r is a prime congruent to $1(\bmod 3)$. Then items 1 and 2 of Theorem F hold for the group G. In particular, items 1and 2 of Theorem F hold if G is a Frobenius group of order $n=p q$, where p and q are distinct odd primes which are both congruent to $1(\bmod 3)$.

https://daneshyari.com/en/article/4649726

Download Persian Version:

https://daneshyari.com/article/4649726

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: gilk@mta.ac.il (G. Kaplan).

