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a b s t r a c t

Let G be a plane graph having no 5-cycles with a chord. If either ∆ ≥ 6, or ∆ = 5 and
G contains no 4-cycles with a chord or no 6-cycles with a chord, then G is edge-(∆ + 1)-
choosable, where ∆ denotes the maximum degree of G.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). An edge-k-coloring of G is a mapping φ from E(G) to the set of
colors {1, 2, . . . , k} such that φ(e) 6= φ(e′) for any adjacent edges e and e′ of G. The chromatic indexχ′(G) is the smaller integer
k such that G has an edge-k-coloring. The mapping L is said to be an edge assignment for the graph G if it assigns a list L(e) of
possible colors to each edge e of G. If G has a proper edge coloring φ such that φ(e) ∈ L(e) for all edges e, then we say that G is
edge-L-colorable or φ is an edge-L-coloring of G. We call G edge-k-choosable if it is edge-L-colorable for every edge assignment
L satisfying |L(e)| = k for all edges e. The list chromatic index χ′l(G) of G is the smallest k such that G is edge-k-choosable.

The well-known List Coloring Conjecture is stated as follows:

Conjecture 1. If G is a multigraph, then χ′l(G) = χ′(G).

Conjecture 1 is proved for a few special cases, such as bipartite multigraphs [3], complete graphs of odd order [4],
multicircuits [15], graphs with ∆ ≥ 12 and embeddable in a surface of nonnegative characteristic [2], outerplanar
graphs [11], etc.

A weaker conjecture on list edge coloring was proposed by Vizing (see [7]):

Conjecture 2. Every simple graph G is edge-(∆+ 1)-choosable.

Harris [5] proved that χ′l(G) ≤ 2∆ − 2 if G is a graph with ∆ ≥ 3, which implies Conjecture 2 for the case ∆ = 3. In his
earlier paper [9], Vizing gave a list coloring version of Brooks’ theorem, which also confirms Conjecture 2 for a ∆ = 3 graph.
In 1999, Juvan, Mohar, and Škrekovski [6] settled the case for ∆ = 4. Conjecture 2 is also confirmed for complete graphs [4],
graphs with girth at least 8∆(ln ∆ + 1.1) [7], and planar graphs with ∆ ≥ 9 [1]. Wang and Lih [12] proved that a planar
graph G with ∆ ≥ 6 and without intersecting 3-cycles is edge-(∆+ 1)-choosable. Suppose that G is a planar graph without
k-cycles for some fixed integer 3 ≤ k ≤ 6. Then, Conjecture 2 holds if G satisfies one of the following conditions: (i) either
k = 3, or k = 4 and ∆ ≥ 6 [16]; (ii) k = 5 [13]; (iii) k = 6 and ∆ ≥ 6 [10]; (iv) ∆ = 5 and either k = 4 or k = 6 [14].
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Fig. 1. All possible clusters in G.

Fig. 2. Configurations (B3) and (B4) in Lemma 5.

A cycle C of length k of a graph G is called a k-hole (or k-net) if C has no (or at least one) chord in G. In this paper, we shall
prove the following results:

Theorem 1. Every plane graph G with ∆ ≥ 6 and without 5-nets is edge-(∆+ 1)-choosable.

Theorem 2. Every plane graph G with ∆ = 5 and without 5- and 6-nets is edge- 6-choosable.

Theorem 3. Every plane graph G with ∆ = 5 and without 4- and 5-nets is edge- 6-choosable.

Only simple graphs are considered in this paper. A plane graph is a particular drawing of a planar graph in the Euclidean
plane. Given a plane graph G, we use F(G) to denote the set of faces of G. For x ∈ V(G) ∪ F(G), let d(x) denote the degree of x
in G. A vertex (or face) of degree k is called a k-vertex (or k-face). For v ∈ V(G) and k ≥ 3, let Fk(v) denote the set of k-faces in
G which are incident to the vertex v. A face f ∈ F(G) is written as f = [u1u2 · · · un] if u1, u2, . . . , un are the boundary vertices
of f in clockwise order. A 3-face f of G is called an (i, j, k)-face if the boundary vertices of f are of degrees i, j, k, respectively.
Let F′3(v) denote the set of all (3, 6, 6)-faces in F3(v). Let n3(v) denote the number of 3-vertices adjacent to a vertex v.

2. Proof of Theorem 1

Let G be a plane graph with the minimum degree δ(G) ≥ 3 and without 5-nets. Then the following configurations H1 and
H2 will be excluded from G.

(H1) a 3-face adjacent to a 4-face;
(H2) a 3-face adjacent to two nonadjacent 3-faces.
A subgraph C of G is called a cluster if C consists of a nonempty minimal set of 3-faces in G such that no other 3-face is

adjacent to a member of this set. A k-cluster is a cluster formed by k 3-faces.

Lemma 4. Suppose that G is a plane graph with δ(G) ≥ 3 and without 5-nets. Then the following configurations exhaust all
possible clusters of G (see Fig. 1):

C1 : a 3-face;
C2 : two adjacent 3-faces;
C3 : three mutually adjacent 3-faces.

Let us observe the cluster C3 which consists of three 3-faces f1 = [xyu], f2 = [yzu] and f3 = [zxu]. Clearly, d(u) = 3. If
d(x) = d(y) = d(z) = 6, we write C3 as C(6)

3 .

Lemma 5. Let G be a plane graph with ∆ = 6 and without 5-nets. Then G contains one of the following configurations,
where (B3) and (B4) are depicted in Fig. 2:

(B1) an edge xy with d(x)+ d(y) ≤ 8;
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