

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Edge choosability of planar graphs without 5-cycles with a chord*

Yongzhu Chen, Weiyi Zhu, Weifan Wang*

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

ARTICLE INFO

Article history:
Received 24 September 2007
Received in revised form 28 April 2008
Accepted 28 April 2008
Available online 20 June 2008

Keywords: Plane graph Edge choosability Cycle Chord

ABSTRACT

Let *G* be a plane graph having no 5-cycles with a chord. If either $\Delta \geq 6$, or $\Delta = 5$ and *G* contains no 4-cycles with a chord or no 6-cycles with a chord, then *G* is edge- $(\Delta + 1)$ -choosable, where Δ denotes the maximum degree of *G*.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

5 7

Conjecture 1. If G is a multigraph, then $\chi'_l(G) = \chi'(G)$.

Conjecture 1 is proved for a few special cases, such as bipartite multigraphs [3], complete graphs of odd order [4], multicircuits [15], graphs with $\Delta \geq 12$ and embeddable in a surface of nonnegative characteristic [2], outerplanar graphs [11], etc.

A weaker conjecture on list edge coloring was proposed by Vizing (see [7]):

Conjecture 2. Every simple graph G is edge- $(\Delta + 1)$ -choosable.

Harris [5] proved that $\chi'_l(G) \leq 2\Delta - 2$ if G is a graph with $\Delta \geq 3$, which implies Conjecture 2 for the case $\Delta = 3$. In his earlier paper [9], Vizing gave a list coloring version of Brooks' theorem, which also confirms Conjecture 2 for a $\Delta = 3$ graph. In 1999, Juvan, Mohar, and Škrekovski [6] settled the case for $\Delta = 4$. Conjecture 2 is also confirmed for complete graphs [4], graphs with girth at least $8\Delta(\ln \Delta + 1.1)$ [7], and planar graphs with $\Delta \geq 9$ [1]. Wang and Lih [12] proved that a planar graph G with $\Delta \geq 6$ and without intersecting 3-cycles is edge- $(\Delta + 1)$ -choosable. Suppose that G is a planar graph without K-cycles for some fixed integer $1 \leq k \leq 6$. Then, Conjecture 2 holds if G satisfies one of the following conditions: (i) either K = 1, or K = 1 and K = 1 and K = 1 or K = 1 or K = 1 and K = 1 or K = 1 or

[☆] This research was supported partially by NSFC (No. 10771197) and ZJNSFC (No. Y607467).

^{*} Corresponding author. E-mail address: wwf@zjnu.cn (W. Wang).

Fig. 1. All possible clusters in G.

Fig. 2. Configurations (B3) and (B4) in Lemma 5.

A cycle C of length k of a graph G is called a k-hole (or k-net) if C has no (or at least one) chord in G. In this paper, we shall prove the following results:

Theorem 1. Every plane graph G with $\Delta \geq 6$ and without 5-nets is edge- $(\Delta + 1)$ -choosable.

Theorem 2. Every plane graph G with $\Delta = 5$ and without 5- and 6-nets is edge- 6-choosable.

Theorem 3. Every plane graph G with $\Delta = 5$ and without 4- and 5-nets is edge-6-choosable.

Only simple graphs are considered in this paper. A *plane* graph is a particular drawing of a planar graph in the Euclidean plane. Given a plane graph G, we use F(G) to denote the set of faces of G. For $x \in V(G) \cup F(G)$, let d(x) denote the degree of X in G. A vertex (or face) of degree K is called a K-vertex (or K-face). For K is K is an K in K is written as K in K

2. Proof of Theorem 1

Let *G* be a plane graph with the minimum degree $\delta(G) \geq 3$ and without 5-nets. Then the following configurations H_1 and H_2 will be excluded from *G*.

(H1) a 3-face adjacent to a 4-face;

(H2) a 3-face adjacent to two nonadjacent 3-faces.

A subgraph \mathcal{C} of G is called a *cluster* if \mathcal{C} consists of a nonempty minimal set of 3-faces in G such that no other 3-face is adjacent to a member of this set. A *k-cluster* is a cluster formed by *k* 3-faces.

Lemma 4. Suppose that G is a plane graph with $\delta(G) \geq 3$ and without 5-nets. Then the following configurations exhaust all possible clusters of G (see Fig. 1):

 C_1 : a 3-face;

C₂: two adjacent 3-faces;

 C_3 : three mutually adjacent 3-faces.

Let us observe the cluster C_3 which consists of three 3-faces $f_1 = [xyu]$, $f_2 = [yzu]$ and $f_3 = [zxu]$. Clearly, d(u) = 3. If d(x) = d(y) = d(z) = 6, we write C_3 as $C_3^{(6)}$.

Lemma 5. Let G be a plane graph with $\Delta = 6$ and without 5-nets. Then G contains one of the following configurations, where (B3) and (B4) are depicted in Fig. 2:

(B1) an edge xy with $d(x) + d(y) \le 8$;

Download English Version:

https://daneshyari.com/en/article/4649749

Download Persian Version:

https://daneshyari.com/article/4649749

<u>Daneshyari.com</u>