

Discrete Mathematics 308 (2008) 1665-1673

www.elsevier.com/locate/disc

P_5 -factorization of complete bipartite graphs

Jian Wang^a, Beiliang Du^{b,*}

^aNantong Vocational College, Nantong 226007, PR China ^bDepartment of Mathematics, Suzhou University, Suzhou 215006, PR China

Received 29 October 2003; received in revised form 7 August 2006; accepted 27 September 2006 Available online 24 April 2007

Abstract

A P_k -factor of complete bipartite graph $K_{m,n}$ is a spanning subgraph of $K_{m,n}$ such that every component is a path of length k. A P_k -factorization of $K_{m,n}$ is a set of edge-disjoint P_k -factors of $K_{m,n}$ which is a partition of the set of edges of $K_{m,n}$. When k is an even number, the spectrum problem for a P_k -factorization of $K_{m,n}$ has been completely solved. When k is an odd number, Ushio in 1993 proposed a conjecture. However, up to now we only know that Ushio Conjecture is true for k=3. In this paper we will show that Ushio Conjecture is true when k=5. That is, we shall prove that a necessary and sufficient condition for the existence of a P_5 -factorization of $K_{m,n}$ is (1) $3n \ge 2m$, (2) $3m \ge 2n$, (3) $m+n \equiv 0 \pmod 5$, and (4) 5mn/[4(m+n)] is an integer. © 2007 Elsevier B.V. All rights reserved.

Keywords: Complete bipartite graph; Path; Factorization

1. Introduction

Let P_k be the path on k vertices and $K_{m,n}$ be the complete bipartite graph with partite sets V_1 and V_2 , where $|V_1| = m$ and $|V_2| = n$. A subgraph F of $K_{m,n}$ is called a spanning subgraph of $K_{m,n}$ if F contains all the vertices of $K_{m,n}$. A P_k -factor of $K_{m,n}$ is a spanning subgraph F of $K_{m,n}$ such that every component of F is a P_k and every pair of P_k 's has no vertex in common. A P_k -factorization of $K_{m,n}$ is a set of edge-disjoint P_k -factors of $K_{m,n}$ which is a partition of the set of edges of $K_{m,n}$. In paper [6], the P_k -factorization of $K_{m,n}$ is defined as a resolvable (m, n, k, 1) bipartite P_k -design. The graph $K_{m,n}$ is called P_k -factorizable whenever it has a P_k -factorization. For graph theoretical terms, see [4].

When k is an even number, the spectrum problem for a P_k -factorization of $K_{m,n}$ has been completely solved (see [3,6,8]). When k is an odd number, the spectrum problem for a P_k -factorization of $K_{m,n}$ seems to be much less tractable. Ushio in [5] gave a necessary and sufficient condition for existence of P_3 -factorization of $K_{m,n}$. Some further work was done by Ushio and Tsuruno in [7], Du in [1,2], and Wang and Du in [9]. In paper [6], Ushio proposed the following conjecture [6, Conjecture 5.3].

Conjecture 1.1. Let m and n be positive integers and k be odd. Then $K_{m,n}$ has a P_k -factorization if and only if (1) $(k+1)n \ge (k-1)m$, (2) $(k+1)m \ge (k-1)n$, (3) $m+n \equiv 0 \pmod k$, and (4) kmn/[(k-1)(m+n)] is an integer.

E-mail address: dubl@suda.edu.cn (B. Du).

0012-365X/ $\!\$$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2006.09.046

[†] This work was supported by the National Natural Science Foundation of China (Grant no. 10571133).

^{*} Corresponding author.

However, up to now we only know that Ushio Conjecture is true for k = 3. In this paper we will show that Ushio Conjecture is true when k = 5. That is, we shall prove:

Theorem 1.2. Let m and n be positive integers. Then $K_{m,n}$ has a P_5 -factorization if and only if (1) $3n \ge 2m$, (2) $3m \ge 2n$, (3) $m + n \equiv 0 \pmod{5}$, and (4) 5mn/[4(m+n)] is an integer.

2. Proof of the main result

First, assume that a P_5 -factorization of $K_{m,n}$ is given. Certain integers are defined as follows:

- t = the number of copies of P_5 in any factor,
- r = the number of P_5 -factors in the factorization,
- a = the number of copies of P_5 with its endpoints in Y in a particular P_5 -factor (type M),
- b = the number of copies of P_5 with its endpoints in X in a particular P_5 -factor(type W),
- c = the total number of copies of P_5 in the whole factorization.

Since any P_5 -factor spans $K_{m,n}$,

$$t = \frac{m+n}{5}. (2.1)$$

Every P_5 -factor has 4t edges so that in a factorization mn = 4rt = 4c. Thus

$$r = \frac{5mn}{4(m+n)}. (2.2)$$

By definition of a and b, we get 2a + 3b = m and 3a + 2b = n. Hence

$$a = \frac{3n - 2m}{5},\tag{2.3}$$

$$b = \frac{3m - 2n}{5}. (2.4)$$

Since expressions (2.1)–(2.4) must be integers, we have the following necessary condition for the existence of a P_5 -factorization of the complete bipartite graph $K_{m,n}$.

Lemma 2.1. If $K_{m,n}$ has a P_5 -factorization, then (1) $3n \ge 2m$, (2) $3m \ge 2n$, (3) $m + n \equiv 0 \pmod{5}$, and (4) 5mn/[4(m+n)] is an integer.

The remainder of this section is devoted to the proof of sufficiency theorem 1.2. For any two integers x and y, we use gcd(x, y) to denote the greatest common divisor of x and y. The following lemma is obvious.

Lemma 2.2. Let g, p and q be positive integers, if gcd(p, q) = 1, then

$$gcd(pq, p + gq) = gcd(p, g).$$

We first prove the following result, which is used later in this paper.

Lemma 2.3. If $K_{m,n}$ has a P_5 -factorization, then $K_{sm,sn}$ has a P_5 -factorization for every positive integer s.

Proof. Let $\{F_i: 1 \le i \le s\}$ be a P_2 -factorization of $K_{s,s}$ (whose existence, see [4]). For each $i \in \{1, 2, ..., s\}$, replace every edge of F_i by a $K_{m,n}$ to get a factor G_i of $K_{sm,sn}$ such that the graph G_i are pairwise edge-disjoint and their union is $K_{sm,sn}$. Since $K_{m,n}$ has a P_5 -factorization, it is clear that the graph G_i , too, has a P_5 -factorization. Consequently, $K_{sm,sn}$ has a P_5 -factorization. This proves the theorem. \square

Now we start to prove our main result Theorem 1.2. There are three cases to consider.

Download English Version:

https://daneshyari.com/en/article/4649922

Download Persian Version:

https://daneshyari.com/article/4649922

<u>Daneshyari.com</u>