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A recursive construction for the dual polar spaces DQ(2n, 2)
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Abstract

New combinatorial constructions for the near hexagons I3 and DQ(6, 2) in terms of ordered pairs of collinear points of the
generalized quadrangle W (2) were given by Sahoo [B.K. Sahoo, New constructions of two slim dense near hexagons, Discrete
Math. 308 (10) (2007) 2018–2024]. Replacing W (2) by an arbitrary dual polar space of type DQ(2n, 2), n ≥ 2, we obtain a
generalization of these constructions. By using a construction alluded to in [B. De Bruyn, A new geometrical construction for the
near hexagon with parameters (s, t, T2) = (2, 5, {1, 2}), J. Geom. 78 (2003) 50–58.] we show that these generalized constructions
give rise to near 2n-gons which are isomorphic to In and DQ(2n, 2). In this way, we obtain a recursive construction for the dual
polar spaces DQ(2n, 2), n ≥ 2, different from the one given in [B.N. Cooperstein, E.E. Shult, Combinatorial construction of some
near polygons, J. Combin. Theory Ser. A 78 (1997) 120–140].
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1. Introduction

1.1. Elementary definitions

A near polygon is a partial linear space S = (P,L, I), I ⊆ P×L, with the property that for every point p ∈ P and
every line L ∈ L, there exists a unique point πL(p) on L nearest to p. Here, distances d(·, ·) are measured in the point
graph or collinearity graph Γ of S. If d is the diameter of Γ , then the near polygon S is called a near 2d-gon. A near
0-gon is a point and a near 2-gon is a line. The class of the near quadrangles coincides with the class of the so-called
generalized quadrangles. A good source for information on near polygons is the recent book [6] of the author. For
more background information on generalized quadrangles, we refer the reader to the book of Payne and Thas [9].

Let S = (P,L, I) be a near polygon. If x and y are two points of S, then we write x ∼ y if d(x, y) = 1 and x 6∼ y
if d(x, y) 6= 1. If X1 and X2 are two non-empty sets of points of S, then d(X1, X2) denotes the minimal distance
between a point of X1 and a point of X2. If X1 is a singleton {x1}, we will also write d(x1, X2) instead of d({x1}, X2).
For every i ∈ Z and every non-empty set X of points of S, Γi (X) denotes the set of all points y for which d(y, X) = i .
If X is a singleton {x}, we will also write Γi (x) instead of Γi ({x}). We define x⊥

:= Γ0(x) ∪ Γ1(x) for every point
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x of S. If X is a set of points, then we define X⊥
:=

⋂
x∈X x⊥ (with the convention that X⊥

= P if X = ∅) and
X⊥⊥

:= (X⊥)⊥.
If L1 and L2 are two lines of a near polygon S, then one of the following two cases occurs (see e.g. Theorem 1.3

of [6]): (i) every point of L1 has distance d(L1, L2) from L2 and every point of L2 has distance d(L1, L2) from L1;
(ii) there exist unique points x1 ∈ L1 and x2 ∈ L2 such that d(x, y) = d(x, x1) + d(x1, x2) + d(x2, y) for any x ∈ L1
and any y ∈ L2. If case (i) occurs, then we say that L1 and L2 are parallel (notation: L1 ‖ L2).

A near polygon is called slim if every line is incident with precisely three points. A near polygon is called dense
if every line is incident with at least three points and if every two points at distance 2 have at least two common
neighbours. By Theorem 4 of Brouwer and Wilbrink [2], every two points of a dense near 2n-gon at distance
δ ∈ {0, . . . , n} from each other are contained in a unique convex sub-(near-)2δ-gon. These convex subpolygons
are called quads if δ = 2, hexes if δ = 3 and maxes if δ = n − 1. The maximal distance between two points of a
convex subpolygon F is called the diameter of F and is denoted as diam(F). If X1, X2, . . . , Xk are k ≥ 1 objects of
a dense near polygon S (like points or sets of points), then 〈X1, X2, . . . , Xk〉 denotes the smallest convex subspace of
S containing X1, X2, . . . , Xk .

Let F be a convex subspace of a dense near polygon S. F is called big in S if F 6= S and if every point of S not
contained in F is collinear with a (necessarily unique) point of F . A point x of S is called classical with respect to F ,
if there exists a unique point x ′

∈ F such that d(x, y) = d(x, x ′) + d(x ′, y) for every point y of F . We will denote the
point x ′ also by πF (x) and call it the projection from x on F . Every point of Γ1(F) is classical with respect to F . If
X is a set of points of S which are classical with respect to F , then we define πF (X) := {πF (x) | x ∈ X}. F is called
classical in S if every point of S is classical with respect to F . Every big subpolygon of S is classical in S.

If F1 and F2 are two convex subspaces of a dense near 2d-gon S with respective diameters d1 and d2 such that
F1 ∩ F2 6= ∅ and F1 is classical in S, then the convex subspace F1 ∩ F2 of S has diameter at least d1 + d2 − d by
Theorem 2.32 of [6].

Suppose F is a convex subpolygon of a slim dense near polygon S. For every point x of F , we defineRF (x) := x .
If x is a point of S not contained in F , then we putRF (x) equal to the unique point of the line xπF (x) different from
x and πF (x). By Theorem 1.11 of [6], RF is an automorphism of S. RF is called the reflection about F .

Let Q be a quad of a dense near polygon S and let x be a point of S at distance δ from Q. By Shult and
Yanushka [11, Proposition 2.6], there are two possibilities. Either Γδ(x) ∩ Q is a point of Q or Γδ(x) ∩ Q is an
ovoid of Q, i.e. a set of points of Q intersecting each line of Q in a unique point. In the former case, x is necessarily
classical with respect to Q and we write x ∈ Γδ,C (Q). In the latter case, x is called ovoidal with respect to Q and we
write x ∈ Γδ,O(Q).

Let Q(2n, 2), n ≥ 2, be a nonsingular parabolic quadric of PG(2n, 2). Let DQ(2n, 2) denote the point-line
geometry whose points are the generators (= subspaces of maximal dimension n − 1) of Q(2n, 2) and whose lines
are the (n − 2)-dimensional subspaces of Q(2n, 2), with incidence given by reverse containment. DQ(2n, 2) is a
so-called dual polar space (Cameron [3]). DQ(2n, 2) is a slim dense near 2n-gon. If α is a totally singular subspace
of dimension n − 1 − k, k ∈ {0, . . . , n}, of Q(2n, 2), then the set of all generators of Q(2n, 2) containing α is a
convex sub-2k-gon of DQ(2n, 2). Conversely, every convex sub-2k-gon of DQ(2n, 2) is obtained in this way. Every
convex subpolygon of DQ(2n, 2) is classical in DQ(2n, 2). The quads of DQ(2n, 2) are isomorphic to the generalized
quadrangle W (2), which is the (up to isomorphisms) unique slim generalized quadrangle with three lines through
each point. If x and y are two points of DQ(2n, 2) at distance 2 from each other, then {x, y}

⊥⊥ is a set {x, y, z} of 3
points which is contained in the quad 〈x, y〉. We call {x, y}

⊥⊥
= {x, y, z} the hyperbolic line of DQ(2n, 2) through

the points x and y. If a and b are two distinct points of {x, y}
⊥, then {x, y}

⊥
= {a, b}

⊥⊥. We say that the hyperbolic
lines {x, y}

⊥ and {x, y}
⊥⊥ of DQ(2n, 2) are orthogonal.

Consider now a hyperplane of PG(2n, 2) which intersects Q(2n, 2) in a nonsingular hyperbolic quadric Q+(2n −

1, 2). The set of generators of Q(2n, 2) not contained in Q+(2n − 1, 2) is a subspace of DQ(2n, 2). By Brouwer
et al. [1, p. 352–353], the point-line geometry induced on that subspace is a slim dense near 2n-gon. Following the
terminology of [6], we denote this near 2n-gon by In . The generalized quadrangle I2 is isomorphic to the (3 × 3)-
grid. The convex subspaces of In have been studied in [6, Section 6.4]. If π is a subspace of dimension n − 1 − k,
k ∈ {0, . . . , n}, on Q(2n, 2) which is not contained in Q+(2n − 1, 2) if k ∈ {0, 1}, then the set Xπ of all generators of
Q(2n, 2) through π which are not contained in Q+(2n −1, 2) is a convex sub-2k-gon of In . Conversely, every convex
sub-2k-gon of In is obtained in this way. If k ≥ 2 and π is not contained in Q+(2n−1, 2), then (the point-line geometry
induced on) Xπ is isomorphic to DQ(2k, 2). If k ≥ 2 and π is contained in Q+(2n − 1, 2), then Xπ is isomorphic to
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