

Available online at www.sciencedirect.com

Discrete Mathematics 308 (2008) 5829–5833

www.elsevier.com/locate/disc

MATHEMATICS

DISCRETE

Note

The independence number in graphs of maximum degree three

Jochen H[a](#page-0-0)rant^a, Michael A. Henning^{[b](#page-0-1)}, Dieter Rautenba[c](#page-0-2)h^a, Ingo Schiermeyer^c

^a Institut für Mathematik, TU Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany

^b *School of Mathematical Sciences, University of Kwazulu-Natal, Pietermaritzburg, 3209, South Africa*

^c Institut für Diskrete Mathematik und Algebra, Technische Universität Bergakademie Freiberg, 09596 Freiberg, Germany

Received 21 July 2007; received in revised form 2 October 2007; accepted 2 October 2007 Available online 26 November 2007

Abstract

We prove that a *K*4-free graph *G* of order *n*, size *m* and maximum degree at most three has an independent set of cardinality at least $\frac{1}{7}(4n - m - \lambda - tr)$, where λ counts the number of components of *G* whose blocks are each either isomorphic to one of four specific graphs or edges between two of these four specific graphs and tr is the maximum number of vertex-disjoint triangles in *G*. Our result generalizes a bound due to Heckman and Thomas [C.C. Heckman, R. Thomas, A new proof of the independence ratio of triangle-free cubic graphs, Discrete Math. 233 (2001) 233–237]. c 2007 Elsevier B.V. All rights reserved.

Keywords: Independence; Triangle; Cubic graph

We consider finite simple and undirected graphs $G = (V, E)$ of order $n(G) = |V|$ and size $m(G) = |E|$. The independence number $\alpha(G)$ of G is defined as the maximum cardinality of a set of pairwise non-adjacent vertices which is called an independent set.

Our aim in the present note is to extend a result of Heckman and Thomas [\[6\]](#page--1-0) (cf. [Theorem 1\)](#page-1-0) about the independence number of triangle-free graphs of maximum degree at most three to the case of graphs which may contain triangles. With their very insightful and elegant proof, Heckman and Thomas also provide a short proof for the result conjectured by Albertson, Bollobás and Tucker [[1\]](#page--1-1) and originally proved by Staton [\[9\]](#page--1-2) that every trianglefree graph *G* of maximum degree at most three has an independent set of cardinality at least $\frac{5}{14}n(G)$ (cf. also [\[7\]](#page--1-3)). (Note that there are exactly two connected graphs for which this bound is best-possible [\[2](#page--1-4)[,3](#page--1-5)[,5](#page--1-6)[,8\]](#page--1-7) and that Fraughnaugh and Locke [\[4\]](#page--1-8) proved that every cubic triangle-free graph *G* has an independent set of cardinality at least $\frac{11}{30}n(G) - \frac{2}{15}$, which implies that, asymptotically, $\frac{5}{14}$ is not the correct fraction.)

In order to formulate the result of Heckman and Thomas and our extension of it we need some definitions.

A block of a graph is called *difficult* if it is isomorphic to one of the four graphs K_3 , C_5 , K_4^* or C_5^* in [Fig. 1,](#page-1-1) i.e., it is either a triangle, or a cycle of length five, or arises by subdividing two independent edges in a *K*⁴ twice, or arises by adding a vertex to a *C*⁵ and joining it to three consecutive vertices of the *C*5. A connected graph is called *bad* if its blocks are either difficult or are edges between difficult blocks.

E-mail addresses: jochen.harant@tu-ilmenau.de (J. Harant), henning@ukzn.ac.za (M.A. Henning), dieter.rautenbach@tu-ilmenau.de (D. Rautenbach), schierme@math.tu-freiberg.de (I. Schiermeyer).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. [doi:10.1016/j.disc.2007.10.029](http://dx.doi.org/10.1016/j.disc.2007.10.029)

Fig. 1. Difficult blocks.

For a graph *G* we denote by $\lambda(G)$ the number of components of *G* which are bad and by tr(*G*) the maximum number of vertex-disjoint triangles in *G*. Note that for triangle-free graphs *G* our definition of $\lambda(G)$ coincides with the one given by Heckman and Thomas [\[6\]](#page--1-0). Furthermore, note that $tr(G)$ can be computed efficiently for a graph G of maximum degree at most three as it equals exactly the number of non-trivial components of the graph formed by the edges of *G* which lie in a triangle of *G*.

Theorem 1 (*Heckman and Thomas [\[6\]](#page--1-0)*). *Every triangle-free graph G of maximum degree at most three has an independent set of cardinality at least* $\frac{1}{7}(4n(G) - m(G) - \lambda(G))$ *.*

Since every K_4 in a graph of maximum degree at most three must form a component and contributes exactly one to the independence number of the graph, we can restrict our attention to graphs that do not contain K_4 's.

Theorem 2. *Every K*4*-free graph G of maximum degree at most three has an independent set of cardinality at least* $\frac{1}{7}(4n(G) - m(G) - \lambda(G) - \text{tr}(G)).$

Proof. For a graph *G* we denote the quantity $4n(G) - m(G) - \lambda(G) - \text{tr}(G)$ by $\psi(G)$. We wish to show that $7\alpha(G) \geq \psi(G)$. For contradiction, we assume that $G = (V, E)$ is a counterexample to the statement such that tr(*G*) is smallest possible and subject to this condition the order $n(G)$ of *G* is smallest possible. If $tr(G) = 0$, then the result follows immediately from [Theorem 1.](#page-1-0) Therefore, we may assume tr(G) ≥ 1 . Since $\alpha(G)$ and $\psi(G)$ are additive with respect to the components of *G*, we may assume that *G* is connected. Furthermore, we may clearly assume that $n(G) > 4$.

Claim 1. *Every vertex in a triangle has degree three.*

Proof of Claim 1. Let *x*, *y* and *z* be the vertices of a triangle. We assume that $d_G(x) = 2$. Clearly, the graph $G' = G[V \setminus \{x, y, z\}]$ is no counterexample, i.e., $7\alpha(G') \geq \psi(G')$. Since for every independent set *I'* of *G'*, the set $I' \cup \{x\}$ is an independent set of *G*, we have $\alpha(G) \geq \alpha(G') + 1$. The triangle *xyz* is vertex-disjoint from all triangles in *G'*, and so $tr(G) \geq tr(G') + 1$.

Suppose $\min\{d_G(y), d_G(z)\} = 2$. Then $\max\{d_G(y), d_G(z)\} = 3$, since *G* is not just a triangle. Furthermore, by the definition of a bad graph, we have $\lambda(G') = \lambda(G)$ and obtain

$$
7\alpha(G) \ge 7\alpha(G') + 7
$$

\n
$$
\ge \psi(G') + 7
$$

\n
$$
= 4n(G') - m(G') - \lambda(G') - \text{tr}(G') + 7
$$

\n
$$
\ge 4(n(G) - 3) - (m(G) - 4) - \lambda(G) - (\text{tr}(G) - 1) + 7
$$

\n
$$
\ge \psi(G) - 12 + 4 + 1 + 7
$$

\n
$$
= \psi(G),
$$

which implies a contradiction. Therefore, we may assume $d_G(y) = d_G(z) = 3$. Let $N_G(y) = \{x, y', z\}$ and $N_G(z) = \{x, y, z'\}$. Regardless of whether $y' = z'$ or not, we have tr(*G*) \geq tr(*G'*) + 1.

If $y' = z'$, then *G'* is connected, *y'* is a vertex of degree one in *G'* and thus $\lambda(G') = \lambda(G) = 0$. If $y' \neq z'$ and $\lambda(G') \geq 2$, then $\lambda(G') = 2$ and *G* is a bad graph itself, i.e., $\lambda(G) = 1$. Therefore, in both cases $\lambda(G') \leq \lambda(G) + 1$, Download English Version:

<https://daneshyari.com/en/article/4649991>

Download Persian Version:

<https://daneshyari.com/article/4649991>

[Daneshyari.com](https://daneshyari.com)