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Abstract

For two given graphs G| and G;, the Ramsey number R(G 1, G7) is the smallest integer n such that for any graph G of order n,
either G contains G or the complement of G contains G;. Let Cy; denote a cycle of length m and K, a complete graph of order
n. We show that R(Cg, Kg) = 50.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs considered in this paper are simple graphs without loops. For two given graphs G and G5, the Ramsey
number R(G1, G») is the smallest integer n such that for any graph G of order n, either G contains G| or G contains
G, where G is the complement of G. The neighborhood N (v) of a vertex v is the set of vertices adjacent to v in G
and N[v] = N(v) U {v}. The maximum and minimum degree of G are denoted by A(G) and §(G), respectively. Let
Vi, Vo € V(G). We use E(V7, V,) to denote the set of the edges between V| and V5. The independence number of a
graph G is denoted by «(G). For U C V(G), we write «(U) for «(G[U]), where G[U] is the subgraph induced by U
in G. A cycle and a path of order n are denoted by C,, and P,, respectively. A clique or a complete graph of order n is
denoted by K,,. We use m K, to denote the union of m vertex disjoint K,,. Let G| and G, be two given graphs, G|+ G»>
is a graph with vertex set V. = V(G1) U V(G3) andedge set E = E(G1) U E(G2) U {uv | u € V(G1),v € V(G2)}.
A Wheel of ordern +1is W,, = K1 4+ C,, and W, is a graph obtained from W,, by deleting a spoke from W,,. A Book
B,=K,+K,isa graph of order n + 2. For notations not defined here, we follow [2].

In 1978, Erdos et al. posed the following conjecture.

Conjecture (Erdos et al. [5]). R(Cp,, Ky) = (m —1)(n— 1)+ 1 form > n > 3 and (m,n) # (3, 3).

The conjecture was confirmed for n = 3 in early works on Ramsey theory [6,8]. Yang et al. [10] proved the
conjecture for n = 4. Bollobés et al. [1] showed that the conjecture is true for n = 5. Schiermeyer [9] confirmed the
conjecture for n = 6. Recently, Cheng et al. [3,4] solved the conjecture for n = 7. All the results as above support
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that the conjecture is true. In this paper, we calculate the value of the Ramsey number R(Cg, Kg). The main result is
the following.

Theorem 1. R(Cg, Kg) = 50.
2. Some lemmas
In order to prove Theorem 1, we need the following lemmas.
Lemma 1 (/3]). Let G be a graph of order Tn — 6 (n > 7) with «(G) < 7. If G contains no Cy, then §(G) > n — 1.

Lemma 2 (/3]). Let G be a graph of order Tn — 6 (n > 7) with «(G) < 7. If G contains no C,, then G contains no
W 2.

Lemma 3 (/7]). R(B2, K7) < 34.
3. Proof of Theorem 1

Proof of Theorem 1. Let G be a graph of order 50. Suppose to the contrary that neither G contains a Cg nor G
contains a Kg. By Lemma 1, we have §(G) > 7. That is

G contains no Cg. @))
1 <a(G) <. 2)
8(G) =1. (3)

Letk € Nand 4 < k < 6. If G contains K| + P, as a subgraph, let P = vy---v and V(Pr) € N(vp).
If G contains Wy or W', let C = vy---v, Wi = {vo} + C and W = {vo} + C — {vov1}. In both cases, let
I ={0,1,...,k}and S = {v; | i € I}. If G contains K} as a subgraph, let {vy, ..., vx} be a clique. If G contains a
Bi—,letvivy € E(G) and v3, ..., vr € N(v1) N N(vy). Inboth cases,let I = {1,...,k}and S = {v; | i € [}.Inall
cases, set U = V(G) — Sand U; = Ny (v;) fori € 1.By 3), |U;| # @ fori € I.If Ui NU; # ¥ for some i, j € I,
letvipr e UiNUj. Set I’ =TU{k+1}, X = SU{vg41}, Y = V(G) — X and ¥; = Ny(v;) fori € I'.If k < 5, then
Y; # @ fori € I''If Y; # @, then for each i € I, let z; be an arbitrary vertex in ¥; and let Z; = Ny (z;).

Let [ be anindex set, A; C V(G) fori € I,and I} = {i1, iz, ...,ix} € I. Wesay that A;,, ..., A;, have Property
A if

AiNA;j =0 foriely, jelandj #i,
and E(A;,Aj) =0 fori,jeiandi # j.
We say that 4;, ..., A; have Property B if

ANA;j=0 and E(A;,Aj)=0 fori,jelandi#j,

and o (U A,-) = Za(A,-) > 8.
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These notations will be used throughout the proof of Theorem 1.
In order to prove Theorem 1, we need the following claims.

Claim 1. G contains no K| + Ps.

Proof. Suppose, to the contrary, that G contains Ky + Ps. By (1), wehave Uy NU3z = UsNUs =Pand U; NU; =0
fori =1,6,j€land j #1i.

If U N Us # (. By (1), we have vjvg, v3v7 € E(G). By (3), Y; # @ fori =1, 3,6,7. By (1), we have Y1, Y3, Y,
and Y7 have Property A, thus |Z;| > 6 and «(Z;) > 2 fori = 1,3, 6,7 by Lemma 2. By (1), Z;, Z3, Zs, and Z7 have
Property B, a contradiction. Hence U, N Us = .

If Uy N Us # @. By Lemma 2, vivg, viv; € E(G). By (3), Y1,Ys,Y7 # @. If Yo = @, then N[v;] = X. By
(1), vsve € E(G), which implies that Y3 # @. It is clear that Yy, Y3, Y, and Y7 have Property A, thus |Z;| > 6 and
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