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Abstract

For two given graphs G1 and G2, the Ramsey number R(G1,G2) is the smallest integer n such that for any graph G of order n,
either G contains G1 or the complement of G contains G2. Let Cm denote a cycle of length m and Kn a complete graph of order
n. We show that R(C8, K8) = 50.
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1. Introduction

All graphs considered in this paper are simple graphs without loops. For two given graphs G1 and G2, the Ramsey
number R(G1,G2) is the smallest integer n such that for any graph G of order n, either G contains G1 or G contains
G2, where G is the complement of G. The neighborhood N (v) of a vertex v is the set of vertices adjacent to v in G
and N [v] = N (v) ∪ {v}. The maximum and minimum degree of G are denoted by ∆(G) and δ(G), respectively. Let
V1, V2 ⊆ V (G). We use E(V1, V2) to denote the set of the edges between V1 and V2. The independence number of a
graph G is denoted by α(G). For U ⊆ V (G), we write α(U ) for α(G[U ]), where G[U ] is the subgraph induced by U
in G. A cycle and a path of order n are denoted by Cn and Pn , respectively. A clique or a complete graph of order n is
denoted by Kn . We use mKn to denote the union of m vertex disjoint Kn . Let G1 and G2 be two given graphs, G1+G2
is a graph with vertex set V = V (G1) ∪ V (G2) and edge set E = E(G1) ∪ E(G2) ∪ {uv | u ∈ V (G1), v ∈ V (G2)}.
A Wheel of order n+ 1 is Wn = K1+Cn and W−n is a graph obtained from Wn by deleting a spoke from Wn . A Book
Bn = K2 + Kn is a graph of order n + 2. For notations not defined here, we follow [2].

In 1978, Erdös et al. posed the following conjecture.

Conjecture (Erdös et al. [5]). R(Cm, Kn) = (m − 1)(n − 1)+ 1 for m ≥ n ≥ 3 and (m, n) 6= (3, 3).

The conjecture was confirmed for n = 3 in early works on Ramsey theory [6,8]. Yang et al. [10] proved the
conjecture for n = 4. Bollobás et al. [1] showed that the conjecture is true for n = 5. Schiermeyer [9] confirmed the
conjecture for n = 6. Recently, Cheng et al. [3,4] solved the conjecture for n = 7. All the results as above support
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that the conjecture is true. In this paper, we calculate the value of the Ramsey number R(C8, K8). The main result is
the following.

Theorem 1. R(C8, K8) = 50.

2. Some lemmas

In order to prove Theorem 1, we need the following lemmas.

Lemma 1 ([3]). Let G be a graph of order 7n − 6 (n ≥ 7) with α(G) ≤ 7. If G contains no Cn , then δ(G) ≥ n − 1.

Lemma 2 ([3]). Let G be a graph of order 7n − 6 (n ≥ 7) with α(G) ≤ 7. If G contains no Cn , then G contains no
Wn−2.

Lemma 3 ([7]). R(B2, K7) ≤ 34.

3. Proof of Theorem 1

Proof of Theorem 1. Let G be a graph of order 50. Suppose to the contrary that neither G contains a C8 nor G
contains a K8. By Lemma 1, we have δ(G) ≥ 7. That is

G contains no C8. (1)

1 ≤ α(G) ≤ 7. (2)

δ(G) ≥ 7. (3)

Let k ∈ N and 4 ≤ k ≤ 6. If G contains K1 + Pk as a subgraph, let Pk = v1 · · · vk and V (Pk) ⊆ N (v0).
If G contains Wk or W−k , let C = v1 · · · vk , Wk = {v0} + C and W−k = {v0} + C − {v0v1}. In both cases, let
I = {0, 1, . . . , k} and S = {vi | i ∈ I }. If G contains Kk as a subgraph, let {v1, . . . , vk} be a clique. If G contains a
Bk−2, let v1v2 ∈ E(G) and v3, . . . , vk ∈ N (v1)∩ N (v2). In both cases, let I = {1, . . . , k} and S = {vi | i ∈ I }. In all
cases, set U = V (G)− S and Ui = NU (vi ) for i ∈ I . By (3), |Ui | 6= ∅ for i ∈ I . If Ui ∩ U j 6= ∅ for some i, j ∈ I ,
let vk+1 ∈ Ui ∩U j . Set I ′ = I ∪ {k + 1}, X = S ∪ {vk+1}, Y = V (G)− X and Yi = NY (vi ) for i ∈ I ′. If k ≤ 5, then
Yi 6= ∅ for i ∈ I ′. If Yi 6= ∅, then for each i ∈ I ′, let zi be an arbitrary vertex in Yi and let Zi = NY (zi ).

Let I be an index set, Ai ⊆ V (G) for i ∈ I , and I1 = {i1, i2, . . . , ik} ⊆ I . We say that Ai1 , . . . , Aik have Property
A if

Ai ∩ A j = ∅ for i ∈ I1, j ∈ I and j 6= i,

and E(Ai , A j ) = ∅ for i, j ∈ I1 and i 6= j.

We say that Ai1 , . . . , Aik have Property B if

Ai ∩ A j = ∅ and E(Ai , A j ) = ∅ for i, j ∈ I1 and i 6= j,

and α

(⋃
i∈I1

Ai

)
=

∑
i∈I1

α(Ai ) ≥ 8.

These notations will be used throughout the proof of Theorem 1.
In order to prove Theorem 1, we need the following claims.

Claim 1. G contains no K1 + P6.

Proof. Suppose, to the contrary, that G contains K1+ P6. By (1), we have U2 ∩U3 = U4 ∩U5 = ∅ and Ui ∩U j = ∅

for i = 1, 6, j ∈ I and j 6= i .
If U2 ∩U5 6= ∅. By (1), we have v1v6, v3v7 6∈ E(G). By (3), Yi 6= ∅ for i = 1, 3, 6, 7. By (1), we have Y1, Y3, Y6,

and Y7 have Property A, thus |Zi | ≥ 6 and α(Zi ) ≥ 2 for i = 1, 3, 6, 7 by Lemma 2. By (1), Z1, Z3, Z6, and Z7 have
Property B, a contradiction. Hence U2 ∩U5 = ∅.

If U0 ∩ U5 6= ∅. By Lemma 2, v1v6, v1v7 6∈ E(G). By (3), Y1, Y6, Y7 6= ∅. If Y2 = ∅, then N [v2] = X . By
(1), v3v6 6∈ E(G), which implies that Y3 6= ∅. It is clear that Y1, Y3, Y6, and Y7 have Property A, thus |Zi | ≥ 6 and
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