

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 309 (2009) 1084-1090

www.elsevier.com/locate/disc

The Ramsey number $R(C_8, K_8)^{\ddagger}$

Yunqing Zhang*, Ke Min Zhang

Department of Mathematics, Nanjing University, Nanjing 210093, China

Received 27 October 2005; accepted 29 November 2007 Available online 9 January 2008

Abstract

For two given graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest integer *n* such that for any graph *G* of order *n*, either *G* contains G_1 or the complement of *G* contains G_2 . Let C_m denote a cycle of length *m* and K_n a complete graph of order *n*. We show that $R(C_8, K_8) = 50$. (© 2007 Elsevier B.V. All rights reserved.

() 2007 Elsevier B. v. An rights reserved.

Keywords: Ramsey number; Cycle; Complete graph

1. Introduction

All graphs considered in this paper are simple graphs without loops. For two given graphs G_1 and G_2 , the *Ramsey* number $R(G_1, G_2)$ is the smallest integer n such that for any graph G of order n, either G contains G_1 or \overline{G} contains G_2 , where \overline{G} is the complement of G. The neighborhood N(v) of a vertex v is the set of vertices adjacent to v in G and $N[v] = N(v) \cup \{v\}$. The maximum and minimum degree of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. Let $V_1, V_2 \subseteq V(G)$. We use $E(V_1, V_2)$ to denote the set of the edges between V_1 and V_2 . The independence number of a graph G is denoted by $\alpha(G)$. For $U \subseteq V(G)$, we write $\alpha(U)$ for $\alpha(G[U])$, where G[U] is the subgraph induced by U in G. A cycle and a path of order n are denoted by C_n and P_n , respectively. A clique or a complete graph of order n is denoted by K_n . We use mK_n to denote the union of m vertex disjoint K_n . Let G_1 and G_2 be two given graphs, G_1+G_2 is a graph with vertex set $V = V(G_1) \cup V(G_2)$ and edge set $E = E(G_1) \cup E(G_2) \cup \{uv \mid u \in V(G_1), v \in V(G_2)\}$. A Wheel of order n + 1 is $W_n = K_1 + C_n$ and W_n^- is a graph obtained from W_n by deleting a spoke from W_n . A Book $B_n = K_2 + \overline{K_n}$ is a graph of order n + 2. For notations not defined here, we follow [2].

In 1978, Erdös et al. posed the following conjecture.

Conjecture (*Erdös et al.* [5]). $R(C_m, K_n) = (m-1)(n-1) + 1$ for $m \ge n \ge 3$ and $(m, n) \ne (3, 3)$.

The conjecture was confirmed for n = 3 in early works on Ramsey theory [6,8]. Yang et al. [10] proved the conjecture for n = 4. Bollobás et al. [1] showed that the conjecture is true for n = 5. Schiermeyer [9] confirmed the conjecture for n = 6. Recently, Cheng et al. [3,4] solved the conjecture for n = 7. All the results as above support

* Corresponding author.

 $[\]stackrel{\text{\tiny trian}}{\longrightarrow}$ This project was supported by NSFC under grant number 10671090.

E-mail address: yunqingzh@nju.edu.cn (Y. Zhang).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.11.064

that the conjecture is true. In this paper, we calculate the value of the Ramsey number $R(C_8, K_8)$. The main result is the following.

Theorem 1. $R(C_8, K_8) = 50$.

2. Some lemmas

In order to prove Theorem 1, we need the following lemmas.

Lemma 1 ([3]). Let G be a graph of order 7n - 6 ($n \ge 7$) with $\alpha(G) \le 7$. If G contains no C_n , then $\delta(G) \ge n - 1$.

Lemma 2 ([3]). Let G be a graph of order 7n - 6 $(n \ge 7)$ with $\alpha(G) \le 7$. If G contains no C_n , then G contains no W_{n-2} .

Lemma 3 ([7]). $R(B_2, K_7) \le 34$.

3. Proof of Theorem 1

Proof of Theorem 1. Let G be a graph of order 50. Suppose to the contrary that neither G contains a C_8 nor \overline{G} contains a K_8 . By Lemma 1, we have $\delta(G) \ge 7$. That is

$$G$$
 contains no C_8 . (1)

$$1 \le \alpha(G) \le 7.$$

$$\delta(G) \ge 7.$$
(2)
(3)

Let $k \in \mathbb{N}$ and $4 \le k \le 6$. If G contains $K_1 + P_k$ as a subgraph, let $P_k = v_1 \cdots v_k$ and $V(P_k) \subseteq N(v_0)$. If G contains W_k or W_k^- , let $C = v_1 \cdots v_k$, $W_k = \{v_0\} + C$ and $W_k^- = \{v_0\} + C - \{v_0v_1\}$. In both cases, let $I = \{0, 1, \dots, k\}$ and $S = \{v_i \mid i \in I\}$. If G contains K_k as a subgraph, let $\{v_1, \dots, v_k\}$ be a clique. If G contains a B_{k-2} , let $v_1v_2 \in E(G)$ and $v_3, \dots, v_k \in N(v_1) \cap N(v_2)$. In both cases, let $I = \{1, \dots, k\}$ and $S = \{v_i \mid i \in I\}$. In all cases, set U = V(G) - S and $U_i = N_U(v_i)$ for $i \in I$. By (3), $|U_i| \neq \emptyset$ for $i \in I$. If $U_i \cap U_j \neq \emptyset$ for some $i, j \in I$, let $v_{k+1} \in U_i \cap U_j$. Set $I' = I \cup \{k+1\}$, $X = S \cup \{v_{k+1}\}$, Y = V(G) - X and $Y_i = N_Y(v_i)$ for $i \in I'$. If $k \le 5$, then $Y_i \neq \emptyset$ for $i \in I'$. If $Y_i \neq \emptyset$, then for each $i \in I'$, let z_i be an arbitrary vertex in Y_i and let $Z_i = N_Y(z_i)$.

Let *I* be an index set, $A_i \subseteq V(G)$ for $i \in I$, and $I_1 = \{i_1, i_2, \dots, i_k\} \subseteq I$. We say that A_{i_1}, \dots, A_{i_k} have **Property A** if

$$A_i \cap A_j = \emptyset$$
 for $i \in I_1$, $j \in I$ and $j \neq i$,
and $E(A_i, A_j) = \emptyset$ for $i, j \in I_1$ and $i \neq j$.

We say that A_{i_1}, \ldots, A_{i_k} have **Property B** if

$$A_i \cap A_j = \emptyset$$
 and $E(A_i, A_j) = \emptyset$ for $i, j \in I_1$ and $i \neq j$,
and $\alpha\left(\bigcup_{i \in I_1} A_i\right) = \sum_{i \in I_1} \alpha(A_i) \ge 8.$

These notations will be used throughout the proof of Theorem 1.

In order to prove Theorem 1, we need the following claims.

Claim 1. *G* contains no $K_1 + P_6$.

Proof. Suppose, to the contrary, that *G* contains $K_1 + P_6$. By (1), we have $U_2 \cap U_3 = U_4 \cap U_5 = \emptyset$ and $U_i \cap U_j = \emptyset$ for $i = 1, 6, j \in I$ and $j \neq i$.

If $U_2 \cap U_5 \neq \emptyset$. By (1), we have v_1v_6 , $v_3v_7 \notin E(G)$. By (3), $Y_i \neq \emptyset$ for i = 1, 3, 6, 7. By (1), we have Y_1, Y_3, Y_6 , and Y_7 have Property A, thus $|Z_i| \ge 6$ and $\alpha(Z_i) \ge 2$ for i = 1, 3, 6, 7 by Lemma 2. By (1), Z_1, Z_3, Z_6 , and Z_7 have Property B, a contradiction. Hence $U_2 \cap U_5 = \emptyset$.

If $U_0 \cap U_5 \neq \emptyset$. By Lemma 2, v_1v_6 , $v_1v_7 \notin E(G)$. By (3), $Y_1, Y_6, Y_7 \neq \emptyset$. If $Y_2 = \emptyset$, then $N[v_2] = X$. By (1), $v_3v_6 \notin E(G)$, which implies that $Y_3 \neq \emptyset$. It is clear that Y_1, Y_3, Y_6 , and Y_7 have Property A, thus $|Z_i| \ge 6$ and

Download English Version:

https://daneshyari.com/en/article/4650014

Download Persian Version:

https://daneshyari.com/article/4650014

Daneshyari.com