

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 309 (2009) 772-783

www.elsevier.com/locate/disc

Separation of clones of cooperations by cohyperidentities

K. Denecke*, K. Saengsura

Universität Potsdam, Institute of Mathematics, Am Neuen Palais, 14415 Potsdam, Germany

Received 10 August 2006; received in revised form 22 January 2008; accepted 23 January 2008 Available online 5 March 2008

Abstract

An n-ary cooperation is a mapping from a nonempty set A to the nth copower of A. A clone of cooperations is a set of cooperations which is closed under superposition and contains all injections. Coalgebras are pairs consisting of a set and a set of cooperations defined on this set. We define terms for coalgebras, coidentities and cohyperidentities. These concepts will be applied to give a new solution of the completeness problem for clones of cooperations defined on a two-element set and to separate clones of cooperations by coidentities.

© 2008 Elsevier B.V. All rights reserved.

Keywords: Cooperations; Coalgebras; Clones; Boolean cooperations; Coidentities; Cohyperidentities

1. Introduction

Cooperations are mappings of the form $f : A \to A^{\cup n_i}$ where $A^{\cup n_i} = \{1, \ldots, n_i\} \times A$ is the n_i -th copower of the set A in the category of sets. A clone of cooperations is a set of cooperations defined on the same set A, closed under superposition of cooperations and containing all injection cooperations $t_j^{n_i} : A \to A^{\cup n_i}$ defined by $a \mapsto (j, a)$ for any $a \in A$ and $1 \le j \le n_i$. A cooperation is said to be essentially *n*-ary if it uses precisely *n* different copies of A. If A is finite and |A| = n, then there are only finitely many clones of cooperations, since any cooperation is at most essentially *n*-ary. In contrast to this result, for any set A with $|A| \ge 2$ there are infinitely many clones of operations defined on A.

If $A = \{0, 1\}$, then there are exactly 12 clones of cooperations. The completeness problem for cooperations is the question of whether the clone generated by a subset $F \subseteq cO_A$ is equal to the clone cO_A of all cooperations. B. Csákány solved this problem in [1]. In [3], for operations on finite sets, a new approach to the completeness problem was proposed. In this paper we want to use similar methods for clones of cooperations. Using coidentities and cohyperidentities we will give a new solution of the completeness problem for cooperations. By the same technique we will separate any two clones of cooperations defined on $\{0, 1\}$ by coidentities. The final aim is to get an equational characterization of clones of cooperations. Different from the case of clones of operations on $\{0, 1\}$ and identities, there are clones of cooperations defined on $\{0, 1\}$ which can not be separated by coidentities.

Let A be a nonempty set and let $A^{\cup n}$ be the *n*-th copower of A, i.e., the union of *n* disjoint copies of A. Let $\underline{n} := \{0, \ldots, n-1\}$. Then $A^{\cup n} := \underline{n} \times A$ is the cartesian product of \underline{n} and A; i.e., $(i, a) \in A^{\cup n}$ denotes for $0 \le i \le n-1$

* Corresponding author.

E-mail address: kdenecke@rz.uni-potsdam.de (K. Denecke).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2008.01.043

the element *a* in the *i*-th copy of *A*. An *n*-ary *cooperation* is a mapping $f^A : A \to A^{\cup n}$. Each *n*-ary cooperation f^A is uniquely determined by a pair (f_1^A, f_2^A) of mappings $f_1^A : A \to \underline{n}$ and $f_2^A : A \to A$. This means, for every $a \in A$ we have $f^A(a) = (f_1^A(a), f_2^A(a)) \in A^{\cup n}$. We call f_1^A and f_2^A the *labelling* and the *mapping* of f^A , respectively. Unary cooperations can be regarded as unary operations defined on *A*. For the 16 binary cooperations on $A = \{0, 1\}$ we use the following notation

	ι_0^2	h_1 (0, 0) (0, 0)	h_2	f	d	<i>g</i> ₁	h_4	82
0	(0, 0)	(0, 0)	(0, 1)	(0, 1)	(0, 0)	(0, 0)	(0, 1)	(0, 1)
1	(0, 1)	(0, 0)	(0, 1)	(0, 0)	(1, 1)	(1, 0)	(1, 1)	(1, 0)
	ι_1^2	h_5	<i>h</i> ₆	h_7	h_8	h	h9	<i>h</i> ₁₀
0	(1, 0)	(1, 0)	(1, 1)	(1, 1)	(1, 0)	(1, 0)	(1, 1)	(1, 1)
1	(1, 1)	(1, 0)	(1, 1)	(1, 0)	(0, 1)	(0, 0)	<i>h</i> 9 (1, 1) (0, 1)	(0, 0).

Cooperations defined on the set $\{0, 1\}$ are called *Boolean cooperations*. Let $cO_A^{(n)}$ be the set of all *n*-ary cooperations defined on A and let $cO_A := \bigcup_{n\geq 1} cO_A^{(n)}$ be the set of all cooperations defined on A. An *indexed coalgebra* of type τ is a pair $A := (A; (f_i^A)_{i\in I})$ where f_i^A is n_i -ary and where $\tau = (n_i)_{i\in I}$ is called the *type* of the coalgebra. Coalgebras were studied first by Drobhlav [5]. These coalgebras are a special case of *functorial coalgebras*, considered for instance by Rutten in [8] which model different kinds of state-based systems, and which attracted a lot of attention during the last few years. In [1] the following superposition of cooperations was introduced. If $f^A \in cO_A^{(n)}$ and $g_0^A, \ldots, g_{n-1}^A \in cO_A^{(k)}$ then we define a *k*-ary cooperation $f^A[g_0^A, \ldots, g_{n-1}^A]: A \to A^{\cup k}$ by

$$a\mapsto ((g^A_{f^A_1(a)})_1(f^A_2(a)), (g^A_{f^A_1(a)})_2(f^A_2(a)))$$

for all $a \in A$. The cooperation $f^A[g_0^A, \ldots, g_{n-1}^A]$ is called the *superposition of* f^A and g_0^A, \ldots, g_{n-1}^A . The *injections* are special *n*-ary cooperations. Any set $C \subseteq cO_A$ which is closed under superposition and contains all injections is said to be a *clone of cooperations*. Clearly cO_A is a clone. Since clones can be regarded as multi-based algebras, the collection of all clones of cooperations on A forms a complete lattice, where the meet operation is the intersection. If $C \subseteq cO_A$ is a clone of cooperations, we will write \underline{C} . In [1] it was shown that for all finite sets A this lattice is finite. If A contains n elements, then any cooperation on A is determined by n-ary cooperations [1], since at most n copies of A are needed to map n elements to some copower of A. All clones of Boolean cooperations are clones:

$$\begin{split} C_{0c} &:= \bigcup_{n \ge 1} \{f \mid f \in cO_{\{0,1\}}^{(n)}(\exists i \in \underline{n}(f(0) = (i, 0)))\}, \\ C_{1c} &:= \bigcup_{n \ge 1} \{f \mid f \in cO_{\{0,1\}}^{(n)}(\exists i \in \underline{n}(f(1) = (i, 1)))\}, \\ D_{c} &:= \bigcup_{n \ge 1} \{f \mid f \in cO_{\{0,1\}}^{(n)}(f_{1}(a) = f_{1}(\neg a) \text{ and } f_{2}(a) = \neg f_{2}(\neg a), a \in \{0, 1\}) \\ &\text{ and where } \neg \text{ denotes the negation}\}, \\ M_{c} &:= \bigcup_{n \ge 1} \{f \mid f \in cO_{\{0,1\}}^{(n)}(f_{1}(0) = f_{1}(1), f_{2}(0) \le f_{2}(1))\}, \\ L_{c} &:= \bigcup_{n \ge 1} \{f \mid f \in cO_{\{0,1\}}^{(n)}(\exists i \in \underline{n}(\exists a_{0}, a_{1} \in \{0, 1\}(\forall x \in \{0, 1\}(f(x) = (i, a_{0} + a_{1}x)))))\}, \\ C_{2} &:= C_{0c} \cap C_{1c} = \bigcup_{n \ge 1} \{f \mid f \in cO_{\{0,1\}}^{(n)}(\exists i, j \in \underline{n}(f(0) = (i, 0), f(1) = (j, 0)))\} \bigcup \left(\bigcup_{n \ge 1} \{\iota_{i}^{n} \mid 0 \le i \le n - 1\} \right), \\ C_{3} &:= \bigcup_{n \ge 1} \{f \mid f \in cO_{\{0,1\}}^{(n)}(\exists i, j \in \underline{n}(f(0) = (i, 0), f(1) = (j, 0)))\} \bigcup \left(\bigcup_{n \ge 1} \{\iota_{i}^{n} \mid 0 \le i \le n - 1\} \right), \end{split}$$

Download English Version:

https://daneshyari.com/en/article/4650148

Download Persian Version:

https://daneshyari.com/article/4650148

Daneshyari.com