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Domination in bipartite graphs
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Abstract

We prove that the domination number of a graph of order n and minimum degree at least 2 that does not contain cycles of
length 4, 5, 7, 10 or 13 is at most 3

8 n. Furthermore, we derive upper bounds on the domination number of bipartite graphs of given
minimum degree.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The domination number γ (G) of a (finite, undirected and simple) graph G = (V, E) is the minimum cardinality of
a set D ⊆ V of vertices such that every vertex in V \ D has a neighbour in D. This parameter is one of the most well
studied in graph theory and the two volume monograph [9,10] provides an impressive account of the research related
to this concept.

Fundamental results about the domination number γ (G) are upper bounds in terms of the order n and the minimum
degree δ of the graph G. Ore [14] proved that γ (G) ≤ n

2 provided δ ≥ 1. For δ ≥ 2 and all but 7 exceptional graphs
Blank [3] and McCuaig and Shepherd [13] proved

γ (G) ≤
2n

5
. (1)

In [17] Reed proved that γ (G) ≤ 3
8 n for δ ≥ 3.

Bounds which are interesting for large minimum degree δ were obtained by Alon and Spencer [1], Arnautov [2]
and Payan [15] who proved (see also Caro and Roditty [5,6]) that

γ (G) ≤

(
1+ ln (δ + 1)

δ + 1

)
n. (2)

While all these bounds hold without restricting the structure of the graph, there are several partly quite recent results [4,
11,12,16,18,19] that involve conditions on the girth of the graph, i.e. the length of a shortest cycle.
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Fig. 1.

Fig. 2.

In the present paper we consider the domination number of graphs of given minimum degree under different cycle
conditions related to bipartite graphs. We prove a best-possible bound on the domination number of graphs of
minimum degree 2 that do not contain cycles of length 4, 5, 7, 10 or 13 and bounds on the domination number
of bipartite graphs of given minimum degree.

2. Results

Graphs as in Fig. 1 show that the bound (1) [3,13] actually remains the best possible for bipartite graphs. Therefore,
it makes sense to forbid cycles of length 4. Since we are eventually interested in the domination number of bipartite
graphs (cf. [7,8]), we will also forbid some odd cycle lengths. Cycles of length 3 and long odd cycles can be dominated
by (roughly) one-third of their vertices and do not pose a problem. Therefore, it suffices to forbid some small odd cycle
length at least 5. Up to the assumption on cycles of length 10 these comments motivate the hypothesis of the following
result.

Theorem 1. If G is a graph of order n, minimum degree at least 2 and domination number γ that does not contain
cycles of length 4, 5, 7, 10 or 13, then γ ≤ 3

8 n.

Proof. For contradiction, we assume that G = (V, E) is a counterexample of minimum sum of order n and size. Let
n and γ be as in the statement of the theorem. Since n and γ are linear with respect to the components of G, the graph
G is connected. Furthermore, the set of vertices of degree at least 3 is independent.

It is easy to check the theorem for cycles and hence we can assume that G has at least one vertex of degree at
least 3.

A path between vertices of degree at least 3 with a internal vertices which are all of degree 2 is called an a-path.
Similarly, a cycle containing a vertex of degree at least 3 and a further vertices which are all of degree 2 is called an
a-loop. See Fig. 2 for an illustration.

In what follows we will consider several times a set V0 ⊆ V of vertices with the property that G[V \ V0] has no
vertex of degree less than 2. Note that G[V \ V0] satisfies the assumptions of the theorem. We will always use the
following notation n0 = |V0|, n1 = n − n0, G0 = G[V0], G1 = G[V \ V0], γ0 = γ (G0) and γ1 = γ (G1). Note that
γ ≤ γ0 + γ1 since the union of a dominating set of G0 and a dominating set of G1 is a dominating set of G. Instead
of a dominating set of G0, we will sometimes consider a set D0 ⊆ V such that every vertex in V0 is either in D0 or
adjacent to a vertex in D0. Clearly, γ ≤ |D0| + γ1.

The general approach of our proof is as follows. We consider the multigraph G ′ which arises from G by replacing
all a-paths and a-loops by (parallel) edges and loops. Our goal is to show in a series of claims that there are no edges
in G ′ corresponding to a-paths or a-loops with a ≡ 0 (mod 3) and that the submultigraph containing the edges
corresponding to a-paths or a-loops with a ≡ 1 (mod 3) has maximum degree at most 2. Given these conditions, a
dominating set of G containing all vertices of degree at least 3 and suitable vertices from the a-paths and a-loops will
be small enough to obtain a contradiction.

Claim 1. There is no a-path with a ≡ 0 (mod 3).
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