

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 4829-4832

www.elsevier.com/locate/disc

Note

Symmetric and resolvable λ -configurations constructed from block designs

Dean Crnković

Department of Mathematics, Faculty of Philosophy, Omladinska 14, 51000 Rijeka, Croatia

Received 1 April 2005; received in revised form 12 July 2007; accepted 14 August 2007 Available online 24 September 2007

Abstract

A λ -configuration $(v_r, b_k)_{\lambda}$ is a finite incidence structure of v points and b blocks such that each block contains exactly k points, each point lies on exactly r blocks and two different points are connected by at most λ blocks. If v = b and hence r = k, then a λ -configuration is symmetric. From any block design we construct λ -configurations. Some block designs lead to symmetric λ -configurations, and some leads to resolvable λ -configurations.

© 2007 Elsevier B.V. All rights reserved.

Keywords: λ -configuration; Block design; Resolvable λ -configuration

1. Introduction

Definition 1. A λ -configuration $(v_r, b_k)_{\lambda}$ is a finite incidence structure $(\mathcal{P}, \mathcal{B}, I)$, where \mathcal{P} and \mathcal{B} are disjoint sets and $I \subseteq \mathcal{P} \times \mathcal{B}$, such that

1. $|\mathcal{P}| = v$,

2. $|\mathscr{B}| = b$,

- 3. every element of \mathcal{B} is incident with exactly *k* elements of \mathcal{P} ,
- 4. every element of \mathcal{P} is incident with exactly *r* elements of \mathcal{B} ,
- 5. every pair of distinct elements of \mathcal{P} is incident with at most λ elements of \mathcal{B} .

The elements of the set \mathcal{P} are called points, and the elements of the set \mathcal{B} are called blocks. If a point *P* is incident with a block *x*, we write *PIx*.

A 2-configuration is called a spatial configuration. If v = b and hence r = k, then a λ -configuration is symmetric.

Definition 2. A parellel class or resolution class in a λ -configuration is a set of blocks that partition the point set. A resolvable λ -configuration is a λ -configuration whose blocks can be partitioned into parallel classes.

E-mail address: deanc@mapef.ffri.hr.

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter 0 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.08.061

Definition 3. Let \mathscr{I} be an incidence structure with the set of points $\mathscr{P} = \{P_1, P_2, \dots, P_v\}$ and the set of blocks $\mathscr{B} = \{x_1, x_2, \dots, x_b\}$. The incidence matrix of \mathscr{I} is a $b \times v$ matrix $M = (m_{ij})$ defined by

 $m_{ij} = \begin{cases} 1 & \text{if } P_j \text{ is incident with } x_i, \\ 0 & \text{otherwise.} \end{cases}$

Definition 4. Let *M* be the incidence matrix of an incidence structure \mathscr{I} . Denote by M^{t} the transpose of *M*. The graph with adjacency matrix

$$\begin{bmatrix} 0 & M \\ M^{t} & 0 \end{bmatrix}$$

is called the incidence graph of \mathcal{I} .

Definition 5. A (v, k, λ) block design is a λ -configuration $(v_r, b_k)_{\lambda}$ such that every pair of points is incident with exactly λ blocks. A (v, 3, 1) block design is called a Steiner triple system.

For further basic definitions and properties of configurations and block designs we refer the reader to [1-3].

2. λ -configurations constructed from block designs

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, I)$ be a (v, k, λ) block design. Let us define the incidence structure $\mathcal{D}_1 = (\mathcal{P}_1, \mathcal{B}_1, I_1)$ as follows: $\mathcal{P}_1 = \{(P, x) \mid P \in \mathcal{P}, x \in \mathcal{B}, PIx\},$ $\mathcal{B}_1 = \{(P, x, Q) \mid P, Q \in \mathcal{P}, P \neq Q, x \in \mathcal{B}, PIx, QIx\},$ $P_1 = (P, x), x_1 = (\bar{P}, \bar{x}, \bar{Q}), P_1I_1x_1 \Leftrightarrow P \in \{\bar{P}, \bar{Q}\}.$

Remark 1. Let *G* be the incidence graph of a (v, k, λ) block design $\mathscr{D} = (\mathscr{P}, \mathscr{B}, I)$ and $\mathscr{D}_1 = (\mathscr{P}_1, \mathscr{B}_1, I_1)$ be the incidence structure defined as above. Then we can describe the incidence structure \mathscr{D}_1 in the following way:

 \mathcal{P}_1 is the set of all the edges of G,

 \mathscr{B}_1 is the set of all paths of length 2 in *G* with the first (and the last) vertex corresponding to a point of \mathscr{D} , $P_1 \in \mathscr{P}_1$, $x_1 \in \mathscr{B}_1$, $P_1 I_1 x_1$ if and only if the union of the corresponding edge and path of length 2 is a path of length 2 or 3.

Theorem 1. Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, I)$ be a (v, k, λ) block design and $\mathcal{D}_1 = (\mathcal{P}_1, \mathcal{B}_1, I_1)$ be the incidence structure defined as above. Then \mathcal{D}_1 is a $(v - 1)\lambda$ -configuration $(v'_{r'}, b'_{k'})_{(v-1)\lambda}$ with the following properties:

- 1. v' = vr = bk,
- 2. $b' = \begin{pmatrix} v \\ 2 \end{pmatrix} \lambda$,
- 3. $k' = 2\tilde{r}$,
- 4. $r' = (v 1)\lambda$,

5. every pair of points is incident with exactly $(v - 1)\lambda$ or λ blocks,

6. every pair of blocks is incident with exactly 2r, r or 0 points.

Proof. It is obvious that v' = vr = bk. Two points of the design \mathcal{D} determine λ blocks in \mathcal{D}_1 , since every pair of points in (v, k, λ) block design is incident with exactly λ blocks. Therefore $b' = {v \choose 2} \lambda$.

If a block x_1 in \mathcal{D}_1 corresponds to an ordered triple (P, x, Q), then x_1 is incident with points which correspond to (P, y) or $(Q, z), y, z \in \mathcal{B}$. Since the points P and Q in \mathcal{D} are incident with r blocks, x_1 is incident with 2r points.

A point $P_1 \in \mathscr{P}_1$ corresponding to an ordered pair (P, x) is incident with blocks which correspond to (P, y, Q), $Q \in \mathscr{P}_1, y \in \mathscr{B}_1$. We can choose Q in v - 1 ways, and each pair P, Q is incident with exactly λ blocks.

Let P_1 be a point in \mathscr{P}_1 which corresponds to an ordered pair (P, x), $R_1 \in \mathscr{P}_1$ corresponds to (P, y) and $Q_1 \in \mathscr{P}_1$ corresponds to (Q, z), $Q \neq P$. A block $x_1 \in \mathscr{B}_1$ is incident with P_1 if and only if it is incident with R_1 . On the other

Download English Version:

https://daneshyari.com/en/article/4650261

Download Persian Version:

https://daneshyari.com/article/4650261

Daneshyari.com