Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On the dimensions of the binary codes of a class of unitals

Ka Hin Leung^a, Qing Xiang^{b,*}

^a Department of Mathematics, National University of Singapore, Kent Ridge, Singapore 119260, Singapore ^b Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, United States

ARTICLE INFO

Article history: Received 14 December 2006 Accepted 6 August 2008 Available online 10 September 2008

Keywords: Buekenhout-Metz unital Code Design Hermitian unital Ideal Unital

ABSTRACT

Let U_{β} be the special Buekenhout-Metz unital in PG(2, q^2), formed by a union of q conics, where $q = p^e$ is an odd prime power. It can be shown that the dimension of the binary code of the corresponding unital design \mathcal{U}_{β} is less than or equal to $q^3 + 1 - q$. Baker and Wantz conjectured that equality holds. We prove that the aforementioned dimension is greater than or equal to $q^3(1 - \frac{1}{p}) + \frac{q^2}{p}$.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A unital is a $2-(m^3 + 1, m + 1, 1)$ design, where $m \ge 2$. All known unitals with parameters $(m^3 + 1, m + 1, 1)$ have m equal to a prime power, except for one example with m = 6 constructed by Mathon [9], and independently by Bagchi and Bagchi [3]. In this note, we will only consider unitals embedded in PG $(2, q^2)$, i.e., unitals coming from a set of $q^3 + 1$ points of PG $(2, q^2)$ which meets every line of PG $(2, q^2)$ in either 1 or q + 1 points. (Sometimes, a point set of size $q^3 + 1$ of PG $(2, q^2)$ with the above line intersection properties is called a unital, too.) A classical example of such unitals is *the Hermitian unital* $\mathcal{U} = (\mathcal{P}, \mathcal{B})$, where \mathcal{P} and \mathcal{B} are the set of absolute points and the set of non-absolute lines of a unitary polarity of PG $(2, q^2)$, respectively.

The Hermitian unital is a special example of a large class of unitals embedded in $PG(2, q^2)$, called the *Buekenhout-Metz unitals*. We refer the reader to [5] for a survey of results on these unitals. A subclass of the Buekenhout-Metz unitals which received some attention can be defined as follows.

Let $q = p^e$ be an **odd** prime power, where $e \ge 1$, let β be a primitive element of \mathbb{F}_{q^2} , and for $r \in \mathbb{F}_q$ let $C_r = \{(1, y, \beta y^2 + r) \mid y \in \mathbb{F}_{q^2}\} \cup \{(0, 0, 1)\}$. We define

$$U_{\beta} = \bigcup_{r \in \mathbb{F}_q} C_r.$$

Note that each C_r is a conic in PG(2, q^2), and any two distinct C_r have only the point $P_{\infty} = (0, 0, 1)$ in common. Hence $|U_{\beta}| = q^3 + 1$. It can be shown that every line of PG(2, q^2) meets U_{β} in either 1 or q + 1 points (see [1,7]). One immediately obtains a unital (design) \mathcal{U}_{β} from U_{β} : The *points* of \mathcal{U}_{β} are the points of U_{β} , and the *blocks* of \mathcal{U}_{β} are the intersections of the secant lines with U_{β} . In this note, we are interested in the binary code $C_2(\mathcal{U}_{\beta})$ of this design, i.e., the \mathbb{F}_2 -subspace spanned by the characteristic vectors of the blocks of \mathcal{U}_{β} in $\mathbb{F}_2^{U_{\beta}}$.

* Corresponding author. E-mail addresses: matlkh@nus.edu.sg (K.H. Leung), xiang@math.udel.edu (Q. Xiang).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2008.08.004

The following proposition and its proof are due to Baker and Wantz [6,10]. To state the proposition, we use v^S to denote the characteristic vector of a subset *S* in U_β .

Proposition 1.1 (Baker and Wantz). The vectors v^{C_r} , $r \in \mathbb{F}_a$, form a linearly independent set of vectors in $\mathcal{C}_2(\mathcal{U}_\beta)^{\perp}$.

Proof. A binary vector v lies in $\mathcal{C}_2(\mathcal{U}_\beta)^{\perp}$, if and only if, each block of the design \mathcal{U}_β meets the support of v in an even number of points. If a block of \mathcal{U}_β goes through P_∞ , then it meets every C_r in two points; if a block of \mathcal{U}_β does not go through P_∞ , then it meets every C_r in either 0 or 2 points. Hence $v^{C_r} \in \mathcal{C}_2(\mathcal{U}_\beta)^{\perp}$, for every $r \in \mathbb{F}_q$. The q conics C_r have only the point P_∞ in common. Thus, v^{C_r} , $r \in \mathbb{F}_q$, are linearly independent. The proof is complete. \Box

An immediate corollary of Proposition 1.1 is that $\dim \mathcal{C}_2(\mathcal{U}_\beta)^{\perp} \ge q$. Hence $\dim \mathcal{C}_2(\mathcal{U}_\beta) \le q^3 + 1 - q$. Baker and Wantz [6,10] made the following conjecture.

Conjecture 1.2 (Baker and Wantz). The 2-rank of \mathcal{U}_{β} is $q^3 + 1 - q$. That is, dim $\mathcal{C}_2(\mathcal{U}_{\beta}) = q^3 + 1 - q$.

Wantz [10] verified Conjecture 1.2 in the cases where q = 3, 5, 7, and 9 by using a computer and MAGMA [4]. Gary Ebert [6] popularized the above conjecture of Baker and Wantz in a talk in Oberwolfach in 2001. See also [11] for a description of the above conjecture. Of course, the conjecture is equivalent to saying that dim $C_2(\mathcal{U}_\beta)^{\perp} = q$. So it suffices to show that $\{v^{C_r} \mid r \in \mathbb{F}_q\}$ spans $C_2(\mathcal{U}_\beta)^{\perp}$. That is, we need to show that if $S \subset U_\beta$ and S meets every block of \mathcal{U}_β in an even number of points, then S is a union of some C_r 's, or a union of some C_r 's with P_∞ deleted. We have not been able to prove this equivalent version of the conjecture. What we could prove is a lower bound on dim $C_2(\mathcal{U}_\beta)$ as stated in the abstract. The main idea in our proofs is to realize a shortened code of $C_2(\mathcal{U}_\beta)$ as an ideal in a certain group algebra of the elementary abelian p-group of order q^3 . We hope that the current note will stimulate further research on this conjecture.

2. A lower bound on the dimension of $\mathfrak{C}_2(\mathfrak{U}_\beta)$

We first consider the automorphisms of \mathcal{U}_{β} . Let

$$G = \{\theta \in PGL(3, q^2) \mid \theta(U_\beta) = U_\beta\}$$

be the linear collineation group of PG(2, q^2) fixing U_β as a set. It was shown by Baker and Ebert [2] that

$$G = T \rtimes \mathbb{Z}_{2(q-1)},$$

where *T* is an elementary abelian group of order q^3 , and $\mathbb{Z}_{2(q-1)}$ is a cyclic group of order 2(q-1). The group *G* certainly is also an automorphism group of the design \mathcal{U}_{β} since any element of *G* maps a secant line of U_{β} to a secant line of U_{β} . In fact, the group *T* above acts regularly on $U_{\beta} \setminus \{P_{\infty}\}$. Explicitly,

$$T = \left\{ \begin{pmatrix} 1 & t & \beta t^2 \\ 0 & 1 & 2\beta t \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & r \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| t \in \mathbb{F}_{q^2}, r \in \mathbb{F}_q \right\} \cong (\mathbb{F}_{q^2}, +) \times (\mathbb{F}_q, +).$$

In the rest of the paper, we will use T(t, r), $t \in \mathbb{F}_{q^2}$, $r \in \mathbb{F}_q$, to denote the element

$$\begin{pmatrix} 1 & t & \beta t^2 \\ 0 & 1 & 2\beta t \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & r \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

of T.

The coordinates of the code $C_2(\mathcal{U}_\beta)$ are labeled by the points in U_β . Deleting the coordinate labeled by P_∞ from all codewords of $C_2(\mathcal{U}_\beta)$, we get a shortened (or punctured) code $C_2(\mathcal{U}_\beta)'$, which has the same dimension over \mathbb{F}_2 as $C_2(\mathcal{U}_\beta)$ since $v^{\{P_\infty\}} \notin C_2(\mathcal{U}_\beta)$. Since *T* acts regularly on $U_\beta \setminus \{P_\infty\}$, we may identify the coordinates of $C_2(\mathcal{U}_\beta)'$ with the elements of *T*. Under this identification, the point $(1, t, \beta t^2 + r)$ of U_β correspond to the group element T(t, r) since

$$(1, 0, 0) \cdot T(t, r) = (1, t, \beta t^2 + r).$$

After the above identification, the code $\mathcal{C}_2(\mathcal{U}_\beta)'$ becomes an ideal of the group algebra $\mathbb{F}_2[T]$. Now we can use the characters of *T* to help compute the dimension of $\mathcal{C}_2(\mathcal{U}_\beta)'$.

First of all, we need to extend the field over which the code $C_2(\mathcal{U}_\beta)$ is defined. Let $K = \mathbb{F}_{2^m}$, where $m = \operatorname{ord}_p(2)$ is the order of 2 modulo p (i.e., m is the smallest positive integer such that $2^m \equiv 1 \pmod{p}$). So K contains a primitive pth root of unity ξ_p . We consider the code $C_K(\mathcal{U}_\beta)$ and puncture it at P_∞ to get $C_K(\mathcal{U}_\beta)'$, which will be denoted by M for simplicity of notation. The code M is an ideal of the group algebra K[T], and

$$\dim_{\mathcal{K}}(M) = \dim_{\mathbb{F}_2}(\mathcal{C}_2(\mathcal{U}_\beta)').$$

Download English Version:

https://daneshyari.com/en/article/4650270

Download Persian Version:

https://daneshyari.com/article/4650270

Daneshyari.com