Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On the signed edge domination number of graphs

S. Akbari^{a,b,*}, S. Bolouki^c, P. Hatami^b, M. Siami^{c,b}

^a Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5746, Tehran, Iran

^b Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11365-9415, Tehran, Iran

^c Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

ARTICLE INFO

Article history: Received 28 June 2007 Accepted 22 August 2008 Available online 11 September 2008

Keywords: Signed edge domination number m-connected Complete bipartite graph

ABSTRACT

Let $\gamma'_{s}(G)$ be the signed edge domination number of *G*. In 2006, Xu conjectured that: for any 2-connected graph *G* of order $n(n \ge 2)$, $\gamma'_{s}(G) \ge 1$. In this article we show that this conjecture is not true. More precisely, we show that for any positive integer *m*, there exists an *m*-connected graph *G* such that $\gamma'_{s}(G) \le -\frac{m}{6}|V(G)|$. Also for every two natural numbers *m* and *n*, we determine $\gamma'_{s}(K_{m,n})$, where $K_{m,n}$ is the complete bipartite graph with part sizes *m* and *n*.

© 2008 Elsevier B.V. All rights reserved.

0. Introduction

In this paper all of the graphs that we consider are finite, simple and undirected. Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). The order of G denotes the number of vertices of G. For any $v \in V(G)$, d(v) is the degree of v and E(v) is the set of all edges incident with v. If $e = uv \in E(G)$, then we put $N[e] = \{u'v' \in E(G) | u' = u \text{ or } v' = v\}$. Let G be a graph and $f : E(G) \longrightarrow \{-1, 1\}$ be a function. For every vertex v, we define $s_v = \sum_{e \in E(v)} f(e)$. We denote the complete bipartite graph with two parts of sizes m and n, by $K_{m,n}$. Also we denote the cycle of order n, by C_n . In [4] the signed edge domination function of graphs was introduced as follows:

Let G = (V(G), E(G)) be a non-empty graph. A function $f : E(G) \longrightarrow \{-1, 1\}$ is called a signed edge domination function (SEDF) of G if $\sum_{e' \in N[e]} f(e') \ge 1$, for every $e \in E(G)$. The signed edge domination number of G is defined as,

$$\gamma'_{s}(G) = \min\left\{\sum_{e \in E(G)} f(e) \mid f \text{ is an SEDF of } G\right\}.$$

Several papers have been published on lower bounds and upper bounds of the signed edge domination number of graphs, for instance, see [2–5]. In [2], Xu posed the following conjecture:

For any 2-connected graph *G* of order $n(n \ge 2)$, $\gamma'_s(G) \ge 1$.

In the first section we give some counterexamples to this conjecture by showing that for any natural number *m*, there exists an *m*-connected graph *G* such that $\gamma'_s(G) \le -\frac{m}{6}|V(G)|$. For any natural number *k*, let $g(k) = \min\{\gamma'_s(G) \mid |V(G)| = k\}$. In [2] the following problem was posed:

Determine the exact value of g(k) for every positive integer k. In Section 1, it is shown that for every natural number k, $k \ge 12$, $g(k) \le \frac{-(k-8)^2}{72}$.

^{*} Corresponding author at: Department of Mathematical Sciences, Sharif University of Technology, P. O. Box 11365-9415, Tehran, Iran.

E-mail addresses: s_akbari@sharif.edu (S. Akbari), saadegh@ee.sharif.edu (S. Bolouki), p_hatami@ce.sharif.edu (P. Hatami), miladsiami@ee.sharif.edu (M. Siami).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2008.08.021

Fig. 1. A 2-connected $L_{(2,1)}$ -graph with $\gamma'_s < 1$.

1. Counterexamples to a conjecture

In this section we present some counterexamples to a conjecture that appeared in [2]. We start this section by the following simple lemma and leave the proof to the reader.

Lemma 1. Let $f : E(G) \longrightarrow \{-1, 1\}$ be a function. Then f is an SEDF of G, if and only if for any edge e = uv, $s_u + s_v - f(e) \ge 1$. Moreover, if f is an SEDF, then $s_u + s_v \ge 0$.

An $L_{(m,n)}$ -graph *G* is a graph of order (n+1)(mn+m+1), whose vertices can be partitioned into n+1 subsets V_1, \ldots, V_{n+1} such that:

(i) The induced subgraph on V_1 is the complete graph K_{mn+m+1} .

- (ii) The induced subgraph on V_i , $2 \le i \le n + 1$ is the complement of K_{mn+m+1} .
- (iii) For every *i*, $2 \le i \le n + 1$, all edges between V_1 and V_i form *m* disjoint matchings of size mn + m + 1.
- (iv) There is no edge between V_i and V_j for any $i, j, 2 \le i < j \le n + 1$.

It is well-known that for any natural number r, the edge chromatic number of $K_{r,r}$ is r, see Theorem 6 of [1, p. 93]. Thus for every pair of natural numbers m and n, there is an $L_{(m,n)}$ -graph.

Theorem 1. Let *m* and *n* be two natural numbers. Then for every $L_{(m,n)}$ -graph *G*, we have,

$$\gamma'_{s}(G) \leq \frac{(mn+m+1)(m-mn)}{2}$$

Proof. To prove the inequality we provide an SEDF for *G*, say *f*, such that,

$$\sum_{e \in E(G)} f(e) = \frac{(mn + m + 1)(m - mn)}{2}.$$

Define f(e) = 1, if both end points of *e* are contained in V_1 , and f(e) = -1, otherwise. We find,

$$\sum_{e \in E(G)} f(e) = \frac{(mn + m + 1)(mn + m)}{2} - (mn + m + 1)mn$$
$$= \frac{(mn + m + 1)(m - mn)}{2}.$$

It can be easily verified that for every $v \in V_1$, $s_v = m$, and for every $v \in V(G) \setminus V_1$, $s_v = -m$. Now, Lemma 1 yields that f is an SEDF for G. \Box

Example 1. Consider the $L_{(2,1)}$ -graph G shown in Fig. 1. The graph clearly has perfect matching; and by applying Lemma 1 to the edges of this matching we may conclude that for every SEDF f of this graph, $\sum_{e \in E(G)} f(e) = \frac{1}{2} \sum_{v \in V(G)} s_v \ge 0$, and hence $\gamma'_s(G) \ge 0$. But it follows from Theorem 1 that $\gamma'_s(G) \le 0$. Consequently, $\gamma'_s(G) = 0$ and the bound in Theorem 1 is sharp for this graph.

In [2], Xu conjectured that for any 2-connected graph *G* of order $n \ (n \ge 2)$, $\gamma'_s(G) \ge 1$. The next theorem shows that conjecture fails.

Theorem 2. For any natural number m, there exists an m-connected graph G such that $\gamma'_{s}(G) \leq -\frac{m}{6}|V(G)|$.

Proof. First we claim that for each pair of natural numbers *m* and *n*, every $L_{(m,n)}$ -graph is an *m*-connected graph. To see this we note that if one omits at most m - 1 vertices of an $L_{(m,n)}$ -graph, then some vertices of V_1 remain (because $|V_1| = mn + m + 1$) and since the degree of each vertex of V_i , $2 \le i \le n + 1$ is *m*, the claim is proved.

Download English Version:

https://daneshyari.com/en/article/4650272

Download Persian Version:

https://daneshyari.com/article/4650272

Daneshyari.com