

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 5937-5943

www.elsevier.com/locate/disc

Bipartite graphs are not universal fixers

R.G. Gibson¹

Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6

Received 20 October 2006; received in revised form 4 November 2007; accepted 5 November 2007 Available online 11 December 2007

Abstract

For any permutation π of the vertex set of a graph G, the graph πG is obtained from two copies G' and G'' of G by joining $u \in V(G')$ and $v \in V(G'')$ if and only if $v = \pi(u)$. Denote the domination number of G by $\gamma(G)$. For all permutations π of V(G), $\gamma(G) \leq \gamma(\pi G) \leq 2\gamma(G)$. If $\gamma(\pi G) = \gamma(G)$ for all π , then G is called a universal fixer. We prove that graphs without 5-cycles are not universal fixers, from which it follows that bipartite graphs are not universal fixers. (© 2007 Elsevier B.V. All rights reserved.

Keywords: Domination; Prisms of graphs; Universal fixers; Bipartite graphs

1. Introduction

Informally, we consider the following problem, first posed by Diana (Weizhen) Gu [5] in 1999. Given an arbitrary graph G, form a new graph πG by joining the vertices of two disjoint copies of G by some matching. As shown in [1] the domination number $\gamma(\pi G)$ lies between $\gamma(G)$ and $2\gamma(G)$. Which are the graphs that always satisfy $\gamma(\pi G) = \gamma(G)$, regardless of the matching used to construct πG ? More precisely, are there *any* graphs with nonempty edge sets for which this is true?

It was conjectured by Mynhardt and Xu [8] that such graphs did not exist. We prove this conjecture for a class of graphs that contains all bipartite graphs.

2. Definitions

Formally, for any permutation π of V(G), the *prism of* G *with respect to* π is the graph πG obtained from two copies G' and G'' of G by joining $u \in V(G')$ and $v \in V(G'')$ if and only if $v = \pi(u)$. If π is the identity $\mathbf{1}_G$, then $\pi G = G \times K_2$, the *Cartesian product* of G and K_2 . The graph $G \times K_2$ is often referred to as the *prism of* (or *over*) G and this serves as the motivation for our terminology above. Recent publications on prisms of graphs, sometimes also called permutation graphs, include [3,4].

For a graph G, we often write V and E for the vertex and edge sets of G respectively when it is unnecessary to emphasize the graph G. For $v \in V$, the open neighbourhood N(v) of v is defined by $N(v) = \{u \in V : uv \in E\}$, and

E-mail address: richardg@sfu.ca.

¹ Recipient of an Undergraduate Student Research Award from the Canadian National Science and Engineering Research Council, Summer 2006.

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.disc.2007.11.006

the closed neighbourhood N[v] of v is the set $N(v) \cup \{v\}$. For $S \subseteq V$, $N(S) = \bigcup_{s \in S} N(s)$ and $N[S] = \bigcup_{s \in S} N[s]$. For $A, B \subseteq V, N_A(B) = N(B) \cap A$; when $B = \{u\}$ we write $N_A(u)$ instead of $N_A(B)$. A set $S \subseteq V$ dominates G, written $S \succ G$, if every vertex in V - S is adjacent to a vertex in S, i.e. if V = N[S]. The domination number $\gamma(G)$ of G is defined by $\gamma(G) = \min\{|S| : S \succ G\}$. A γ -set of G is a dominating set of G of cardinality $\gamma(G)$. A set $S \subseteq V$ is a 2-packing of G if $N[u] \cap N[v] = \phi$ (i.e. $d(u, v) \ge 3$) for all distinct $u, v \in S$. We follow [7] for domination terminology.

As shown in e.g. [6,8], $\gamma(G) \leq \gamma(\pi G) \leq 2\gamma(G)$ for all permutations π of V(G). If $\gamma(\pi G) = \gamma(G)$ for some permutation π of V(G), we call G a π -fixer. If G is a $\mathbf{1}_G$ -fixer, that is, if $\gamma(G \times K_2) = \gamma(G)$, then G is a prism fixer, and if $\gamma(\pi G) = \gamma(G)$ for all permutations π of V(G), then G is a universal fixer.

Prism fixers were also studied by Burger, Mynhardt and Weakley [1] and Hartnell and Rall [6], while universal fixers were first considered in [8], where it was conjectured that the edgeless graphs are the only universal fixers. (The graphs $\overline{K_n}$, $n \ge 1$, are universal fixers because $\pi \overline{K_n} = nK_2$ for all permutations π of V(G), and $\gamma(\overline{K_n}) = \gamma(nK_2) = n$.)

Conjecture 1 ([8]). If G is a nontrivial, connected graph, then G is not a universal fixer.

The purpose of this paper is to prove that Conjecture 1 is true for bipartite graphs. We indeed prove a stronger result, namely that graphs without 5-cycles, induced or otherwise, satisfy Conjecture 1. This extends the work in [2], where it was proved that Conjecture 1 is true for regular bipartite graphs. Our work depends on the results in [6,8] which we state in Section 3.

3. Known results and more definitions

The first result characterizes π -fixers in terms of the existence of γ -sets with certain properties.

Lemma 1 ([8]). Let G be a connected graph of order $n \ge 2$ and π a permutation of V. Then $\gamma(\pi G) = \gamma(G)$ if and only if G has a γ -set D such that

(a) *D* admits a partition *D* = *D*₁ ∪ *D*₂, where *D*₁ ≻ *V* − *D*₂;
(b) π(*D*) is a γ-set of *G* and π(*D*₂) ≻ *V* − π(*D*₁).

A γ -set *D* is called a *separable* γ -*set*, or a D_1 - γ -*set* to emphasize the set D_1 , if *D* satisfies Lemma 1(a). Further properties of such sets were obtained in [8]. For $X, Y \subseteq V$ we denote the set of all edges joining vertices in *X* to vertices in *Y* by E(X, Y).

Lemma 2 ([8]). Suppose $D = D_1 \cup D_2$ is a D_1 - γ -set of G. Then

(a) D_2 is a 2-packing of G;

(b) $E(D_1, D_2) = \phi$;

(c) $\sum_{x \in D_1}^{\infty} \deg x \ge n - \gamma$, $\sum_{x \in D_2} \deg x \le n - \gamma$.

For a D_1 - γ -set, $D = D_1 \cup D_2$ of G and a permutation π of V, if $\pi(D)$ is a $\pi(D_2)$ - γ -set of G (thus if Lemma 1(b) holds), we say that D is *effective under* π ; otherwise D is *ineffective under* π . The following theorem follows from Lemma 1.

Theorem 3 ([8]). The nontrivial graph G is a universal fixer if and only if for each permutation π of V there exists a separable γ -set of G that is effective under π .

By Lemma 2(c), if *D* is a D_1 - γ -set, then $\sum_{x \in D_2} \deg x \le n - |D|$. If $\sum_{x \in D_2} \deg x = n - |D|$, then Lemma 2(a) and (b) imply that D_2 dominates V - D and thus *D* is also a D_2 - γ -set. We then call *D* a symmetric γ -set and assume implicitly that *D* admits a partition $D = D_1 \cup D_2$ such that *D* is a D_i - γ -set for i = 1, 2; otherwise *D* is called an *asymmetric* γ -set. We henceforth denote symmetric γ -sets by *A* (usually) or *B* or *C*, and asymmetric γ -sets by *D*. Symmetric γ -sets were also studied in [6], where they were called *two-colored* γ -sets. The following lemma and theorem give more information on symmetric γ -sets and prism fixers.

Lemma 4 ([6,8]). Suppose that A is a symmetric γ -set of G. Then

(b) $\delta(G) \geq 2;$

⁽a) A is independent;

Download English Version:

https://daneshyari.com/en/article/4650314

Download Persian Version:

https://daneshyari.com/article/4650314

Daneshyari.com