

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 6015-6021

www.elsevier.com/locate/disc

H-triangles with *k* interior *H*-points^{\ddagger}

Xianglin Wei, Ren Ding

College of Mathematics, Hebei Normal University, Shijiazhuang 050016, China

Received 12 April 2007; received in revised form 12 November 2007; accepted 13 November 2007 Available online 20 December 2007

Abstract

An *H*-triangle is a triangle with corners in the set of vertices of a tiling of \mathbb{R}^2 by regular hexagons of unit edge. It is known that any *H*-triangle with exactly 1 interior *H*-point can have at most 10 *H*-points on its boundary. In this note we prove that any *H*-triangle with exactly *k* interior *H*-points can have at most 3k + 7 boundary *H*-points. Moreover we form two conjectures dealing with *H*-polygons.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Hexagonal tile; H-point; H-triangle; Triangular lattice; Pick's theorem

1. Introduction

Let *H* be the set of vertices of a tiling of \mathbb{R}^2 by regular hexagons with unit edge. A point of *H* is called an *H*-point, a simple polygon in \mathbb{R}^2 whose corners lie in *H* is called an *H*-polygon. For a planar *H*-polygon *P* we denote $b(P) = |H \cap \partial P|$ and $i(P) = |H \cap \inf P|$. *H* can be considered as the union of two disjoint triangular lattices denoted by H^+ , H^- such that for any two points in H^+ (H^-) there exists a translation of the plane which maps one of the two points to the other and *H* to *H*. A point of H^+ (H^-) is called an H^+ -point (H^- -point). Two points *x* and *y* are said to be *equivalent* if *x*, $y \in H^+$ or *x*, $y \in H^-$. Otherwise we say that *x*, *y* are *non-equivalent*.

Let *A* denote the set of all centers of the hexagonal tiles which determine *H*. A point of *A* is called an *A*-point. Clearly, $H^+ \bigcup H^- \bigcup A$ forms a *triangular lattice* with the area of each triangular tile $\frac{\sqrt{3}}{4}$. We will denote this triangular lattice by $T = H^+ \bigcup H^- \bigcup A$, and a point of *T* is called a *T*-point. A simple polygon in \mathbb{R}^2 with all corners in *T* (*A*) is called a *T*-polygon (an *A*-polygon). Clearly an *H*-polygon or an *A*-polygon is also a *T*-polygon. For the related research see [7,2,5] and [1].

It is known that for an *H*-triangle \triangle with exactly one interior *H*-point, $b(\triangle) \in \{3, 4, 5, 6, 7, 8, 10\}$ (see [3]). On the basis of [3] this paper extends the result to *H*-triangles with exactly *k* interior *H*-points, showing that any *H*-triangle with exactly *k* interior *H*-points can have at most 3k + 7H-points on its boundary.

 $[\]stackrel{\circ}{\sim}$ This research was supported by the National Natural Science Foundation of China (10571042), the NSF of Hebei Province (A2005000144, A2007000022, A2007000226) and the SF of the Hebei Normal University (L2004202).

E-mail addresses: wxlhebtu@126.com (X. Wei), rending@hebtu.edu.cn (R. Ding).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.11.020

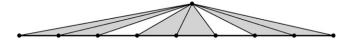


Fig. 1. A-triangles consisting of 2k smaller A-triangles contain at least $\lfloor \frac{2k+1}{3} \rfloor \times 2 \ge k+1$ H-points.

2. Basic facts and related lemmas

A segment with endpoints in T(H, A) is called a *T*-segment (an *H*-segment, an *A*-segment).

Lemma 1 ([3]). Assume that the origin of \mathbb{R}^2 lies in H^+ . If $x \in A(H^-)$, then $2x \in H^-(A)$ and $3x \in H^+$.

Lemma 2 ([3]). If xy is an H-segment such that $xy \cap H = \{x, y\}$ and $xy \cap A = \{a\}$, then the point a is the midpoint of xy. Moreover, x and y are non-equivalent.

Lemma 3 ([3]). If an H-segment contains two A-points, then between them there are at least two H-points which are non-equivalent.

From Lemma 3 immediately we have the following lemma.

Lemma 4. Any A-segment contains zero or an even number of H-points.

Lemma 5. Let \triangle be an A-triangle in which every side contains exactly 2 A-points. If there exists one side of \triangle which contains H-points, then \triangle contains at least 2 H-points, otherwise \triangle contains at least 1 H-point in its interior.

Proof. If one side of \triangle contains *H*-points, then, by Lemma 3, it must contain 2 *H*-points, and so \triangle contains at least 2 *H*-points. If no side of \triangle contains an *H*-point, by an argument as in the proof of Theorem 7 of [4], we can conclude that \triangle contains at least 1 *H*-point in its interior. \Box

As in [3] we will use the notion of *level* of a *T*-triangle $\triangle = \triangle xyz$, here the corners x, y, z of \triangle are labeled in such a way that xy has the largest number of points from $T = H \bigcup A$. The line containing xy is denoted by l_0 . From l_0 to z draw all lines l_1, l_2, \ldots, l_s passing through *T*-points that are parallel to l_0 and intersect \triangle . Clearly $z \in l_s$, and the distance between l_j and l_{j+1} is the same for every j. We say that \triangle has s levels l_1, l_2, \ldots, l_s . It is obvious that every *H*-triangle with one interior *H*-point has at least two levels.

Let m_j be the *relative length* of $\triangle \bigcap l_j$, that is, the length with the unit length being the distance between two consecutive *T*-points on l_j . Denote $t_j = |l_j \bigcap \text{int} \triangle \bigcap T|$. Obviously for j > 0 we have $\lfloor m_j \rfloor - 1 \le t_j \le \lfloor m_j \rfloor + 1$, where $\lfloor . \rfloor$ denotes the greatest integer function. Notice that if $t_j = \lfloor m_j \rfloor - 1$, then m_j is an integer, and $m_j = t_j + 1$.

Lemma 6 ([3]). If an *H*-triangle \triangle has s levels, then for $0 \le j < s$ we have $m_j = m_0(1 - \frac{j}{s})$.

Lemma 7. There exists no H-triangle \triangle with k interior H-points and 2k + 2 interior A-points.

Proof. For k = 1 the conclusion is correct (see [3]). Now consider $k \ge 2$.

Let \triangle be an *H*-triangle with exactly *k* interior *H*-points. Assume on the contrary that \triangle contains 2k + 2 interior *A*-points.

Case 1: The 2k + 2 interior *A*-points of \triangle are non-collinear.

Denote by P the point set consisting of the 2k + 2 A-points not on a line.

Case 1.1: There are 2k + 1 A-points of P on a line, say l.

Then CH(P), the convex hull of P, is an A-triangle consisting of 2k smaller A-triangles, and the interiors of these A-triangles do not intersect. By Lemma 5, we know that any two smaller A-triangles with a common side contain at least two H-points. So, CH(P) contains at least $\lfloor \frac{2k+1}{3} \rfloor \times 2 \ge k + 1$ H-points (see Fig. 1), which implies that int \triangle contains at least k + 1 H-points, a contradiction.

Case 1.2: There are at most 2k A-points of P collinear.

Now deduce by induction on k a contradiction that int \triangle contains at least k + 1 H-points.

When k = 2, there are at most 2k = 4 *A*-points of *P* collinear, and we can obtain at least three *A*-triangles in which every side contains exactly 2 *A*-points, and the interiors of these three *A*-triangles do not intersect. By Lemma 5 we

Download English Version:

https://daneshyari.com/en/article/4650323

Download Persian Version:

https://daneshyari.com/article/4650323

Daneshyari.com