

Discrete Mathematics 308 (2008) 6269-6284

The chromatic number of 5-valent circulants

Mariusz Meszka^{a,*}, Roman Nedela^b, Alexander Rosa^c

^a Faculty of Applied Mathematics, AGH University of Science and Technology, Kraków, Poland
^b Mathematical Institute, Slovak Academy of Sciences, Banská Bystrica, Slovakia
^c Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada

Received 4 December 2006; received in revised form 28 November 2007; accepted 29 November 2007 Available online 8 January 2008

Abstract

A circulant C(n; S) with connection set $S = \{a_1, a_2, \dots, a_m\}$ is the graph with vertex set \mathbb{Z}_n , the cyclic group of order n, and edge set $E = \{\{i, j\} : |i - j| \in S\}$. The chromatic number of connected circulants of degree at most four has been previously determined completely by Heuberger [C. Heuberger, On planarity and colorability of circulant graphs, Discrete Math. 268 (2003) 153–169]. In this paper, we determine completely the chromatic number of connected circulants C(n; a, b, n/2) of degree 5. The methods used are essentially extensions of Heuberger's method but the formulae developed are much more complex.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Chromatic number; Circulant

1. Introduction

Let n and $1 \le a_1 < a_2 < \cdots < a_m \le \lfloor n/2 \rfloor$ be positive integers. A graph G = (V, E) is called a *circulant* of order n if $V = \{0, 1, \ldots, n-1\}$, $E = \{\{i, i+a_j \pmod n\} : 0 \le i \le n-1, 1 \le j \le m\}$, and is denoted by $C(n; a_1, a_2, \ldots, a_m)$.

The chromatic number of circulants of degree ≤ 4 has been completely determined in [2]. In this paper we deal with connected 5-valent circulants. Therefore $n \geq 6$ is even, m = 3 and $a_3 = n/2$. We use the notation G = C(n; a, b, n/2), where $1 \leq a, b < n/2$ and $a \neq b$. Notice that G is connected iff gcd(a, b, n/2) = 1.

The following result completely determines the chromatic number of connected 5-valent circulants.

E-mail addresses: meszka@agh.edu.pl (M. Meszka), nedela@savbb.sk (R. Nedela), rosa@mcmaster.ca (A. Rosa).

^{*} Corresponding author.

Theorem 1. Let $n \ge 6$ be even and G = C(n; a, b, n/2) be a connected circulant. Let $g = \gcd(a, b, n)$. Then

```
\chi(G) = \begin{cases} 6 & \text{if } G = C(6; 1, 2, 3) \\ 5 & \text{if } G = C(10; 2, 4, 5) \\ 5 & \text{if } 4 \not\mid n \text{ and } a + b = n/2 \\ 4 & \text{if } 4 \mid n \text{ and } a + b = n/2 \\ 4 & \text{if } b = n/4 \text{ or } a = n/4 \\ 4 & \text{if } (g = 1 \text{ or } 6 \not\mid n), (b \equiv \pm 2a \pmod{n} \text{ or } a \equiv \pm 2b \pmod{n}), \\ G \neq C(10; 2, 4, 5) \text{ and } G \neq C(6; 1, 2, 3) \\ 4 & \text{if } n = 16, 24, 28 \text{ and } (b \equiv \pm 5a \pmod{n} \text{ or } a \equiv \pm 5b \pmod{n}) \\ 4 & \text{if } n = 26, g = 2 \text{ and } (b \equiv \pm 5a \pmod{n} \text{ or } a \equiv \pm 5b \pmod{n}) \\ 4 & \text{if } n = 20 \text{ and } (b \equiv \pm 6a \pmod{n} \text{ or } a \equiv \pm 6b \pmod{n}) \\ 4 & \text{if } n = 22, g = 1 \text{ and } (b \equiv \pm 8a \pmod{n} \text{ or } a \equiv \pm 8b \pmod{n}) \\ 4 & \text{if } n = 28 \text{ and } (b \equiv \pm 8a \pmod{n} \text{ or } a \equiv \pm 8b \pmod{n}) \\ 4 & \text{if } n = 40 \text{ and } (b \equiv \pm 11a \pmod{n} \text{ or } a \equiv \pm 11b \pmod{n}) \\ 2 & \text{if } 4 \not\mid n \text{ and both } a, b \text{ are odd} \\ 3 & \text{otherwise}. \end{cases}
```

2. Preliminaries

Given a graph G=(V,E) and a group $H\leq \operatorname{Aut} G$ we define a quotient graph $\bar{G}=G/H=(\bar{V},\bar{E})$ by taking \bar{V} to be the orbits of the action of H on V and joining orbits \bar{v} to \bar{u} if and only if there exist adjacent vertices $v\in\bar{v}$ and $u\in\bar{u}$. If every orbit is formed by an independent set of vertices then the mapping $u\mapsto\bar{u}$ defines a graph homomorphism $G\to\bar{G}$ and clearly a k-coloring of \bar{G} lifts to a k-coloring of G.

Notice that, since G = C(n; a, b, n/2) is connected, integers a, b and n/2 generate the cyclic group of order n. Moreover, $g = \gcd(a, b, n) = 1$ or g = 2. Thus a subgraph C(n; a, b) of G is either connected or it has exactly two connectivity components. We say that two circulants $G = C(n; a, b, \frac{n}{2})$ and $\bar{G} = C(n; \bar{a}, \bar{b}, \frac{n}{2})$ of order n are *multiplier-isomorphic* if there is an isomorphism of the form $V(G) \ni i \mapsto mi \in V(\bar{G})$ for some multiplier $m \in \mathbb{Z}_n$. This implies the following claim.

Claim 2. A connected 5-valent circulant $C(n; a, b, \frac{n}{2})$ is multiplier-isomorphic with a circulant $C(n; \bar{a}, \bar{b}, \frac{n}{2})$, where either $\gcd(\bar{a}, \bar{b}) = 1$ or $\gcd(\bar{a}, \bar{b}) = 2$; in the latter case $n \equiv 2 \mod 4$.

Moreover, if gcd(a, n) = 1 (or gcd(b, n) = 1) we can easily transform G to a circulant of the form $C(n; 1, \bar{b}, \frac{n}{2})$.

Claim 3. gcd(a, n) = 1 then a circulant $C(n; a, b, \frac{n}{2})$ is multiplier-isomorphic with a circulant $C(n; 1, \bar{b}, \frac{n}{2})$, where $\bar{b} = a^{-1}b \pmod{n}$.

From now on we assume that G is not K_6 . By Brooks' theorem [1], we get an upper bound.

Claim 4. $\chi(G) \leq 5$.

If a, b and $\frac{n}{2}$ are odd integers then $G = C(n; a, b, \frac{n}{2})$ is a bipartite graph and immediately we get the following.

Lemma 5. Let $n \equiv 2 \pmod{4}$ and a, b be odd. Then $G = C(n; a, b, \frac{n}{2})$ is 2-colorable. \square

3. Case a = 1

Lemma 6. Let $n \equiv 2 \pmod{4}$, b is even and $4 \le b < \frac{n}{4}$. Then $G = C(n; 1, b, \frac{n}{2})$ is 3-colorable.

Proof. Let n=2m. Then m is odd. Denote by x and r unique integers satisfying the equality m=bx+r, where $0 \le r < b$. Hence $x \ge 2$, r is odd and $1 \le r \le b-1$. Given x and r, we define a 3-coloring of G by specifying a coloring sequence $w_{x,r}$ of length n over the alphabet $\{B, G, R\}$.

I. *x* is even. Let

Download English Version:

https://daneshyari.com/en/article/4650346

Download Persian Version:

https://daneshyari.com/article/4650346

<u>Daneshyari.com</u>