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Abstract

We consider various properties of a general parity domination problem: given a graph G on n vertices, one is looking for a
subset S of the vertex set such that the open/closed neighborhood of each vertex contains an even/odd number of vertices in S
(it is prescribed individually for each vertex which of these applies). We define the parameter s(G) to be the number of solvable
instances out of 4n possibilities and study the properties of this parameter. Upper and lower bounds for general graphs and trees are
given as well as a remarkable recurrence formula for rooted trees. Furthermore, we give explicit formulas in several special cases
and investigate random graphs.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The classical problem of domination asks for a subset S of the vertex set of a graph G = (V (G), E(G)) of
minimum cardinality such that N [v]∩S 6= ∅ for all v ∈ V (G), where N [v] = {u ∈ V (G) | ∃e = (u, v) ∈ E(G)}∪{v}
denotes the closed neighborhood of v. Quite a lot of different modifications and generalizations of this problem are
known. For instance, the k-tuple domination problem [16] asks for a minimum set S such that |N [v] ∩ S| ≥ k for all
vertices v. Similarly, in the k-domination problem [9,10] the task is to find a set S of minimum cardinality such that
|N (v) ∩ S| ≥ k for all vertices v, where N (v) = {u ∈ V (G) | ∃e = (u, v) ∈ E(G)} denotes the open neighborhood
of v. Even more generally, one can prescribe a set Rv for every vertex v and pose the question whether there exists a
set S such that |N [v] ∩ S| ∈ Rv (or |N (v) ∩ S| ∈ Rv) for all vertices v.

The special cases Rv = {1, 2, 3, . . .} and Rv = {k, k + 1, . . .} have already been mentioned. These and other
variants, such as Rv = {1}, are discussed in the book of Haynes, Hedetniemi and Slater [17]. Another interesting kind
of domination problem involves parity constraints. It has been treated in a series of papers [1–4,8], motivated by the
following remarkable result of Sutner [19]:
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Theorem 1 (Sutner [19]). For every graph G = (V (G), E(G)), there exists a set S ⊆ V (G) such that |N [v] ∩ S| is
odd for every v ∈ V (G).

This means that the domination problem for Rv = {1, 3, 5, . . .} is always solvable if we consider closed
neighborhoods. Thus, it is natural to consider a general parity assignment problem, where each Rv is either
{1, 3, 5, . . .} or {0, 2, 4, . . .}. It has been treated quite extensively in [1–4], where the notions of “parity dimension”
and “all parity realizable graphs” have been introduced. Wagner [21] gives a recursive procedure for determining
the parity dimension of a tree, which is then applied to enumeration problems involving the parity dimension, in
particular to counting all parity realizable trees. All these papers deal with parity domination with respect to closed
neighborhoods, but analogous results exist for the case of open neighborhoods as well—see for instance [14] and the
references therein. Other works such as [15,20] study parity domination with a focus on complexity results.

In another recent paper, Gassner and Hatzl [13] discuss an even more general parity domination problem from an
algorithmic point of view: for every vertex v, we impose exactly one of the following four constraints:

• |N (v) ∩ S| ≡ 0 mod 2,
• |N (v) ∩ S| ≡ 1 mod 2,
• |N [v] ∩ S| ≡ 0 mod 2,
• |N [v] ∩ S| ≡ 1 mod 2,

i.e., the open/closed neighborhood has to contain an even/odd number of vertices in S. One of the reasons to consider
domination problems with parity constraints lies in the fact that the problem can be stated easily in terms of matrix
algebra: in the following, we denote by A and A + I the open neighborhood matrix (adjacency matrix) and the
closed neighborhood matrix respectively (I is the identity matrix). Furthermore, we use a vector a ∈ {0, 1}V (G) as
a representation for the neighborhood information (i.e., whether the open or closed neighborhood is considered for a
certain vertex): If the entry av that corresponds to a vertex v is 0, the open neighborhood is of interest for this vertex,
and the closed neighborhood otherwise. Another vector b ∈ {0, 1}V (G) represents the prescribed parities. Using these
vectors, our requirements can be written as

(A + diag(a))x = b (1)

over the field F2. Obviously, xv = 1 if and only if v ∈ S.
In this paper, we are interested in the number of solvable instances—a parameter that plays an analogous role

to the parity dimension (for the domination problem with parity constraints considering closed subsets only): let
the solvability number s(G) denote the number of solvable instances for a graph G, i.e., the number of pairs
(a, b) ∈ {0, 1}V (G) × {0, 1}V (G) such that there exists a vector x satisfying the system of linear equations in (1).

Basic linear algebra gives us the following simple lemma:

Lemma 2. Let G = (V (G), E(G)) be a graph, then

s(G) =
∑

a∈{0,1}V (G)
2rk(A+diag(a)), (2)

where rk(B) denotes the rank of a matrix B over F2.

Remark 3. Replacing 2 by a variable x in the above formula, we obtain a polynomial

SG(x) =
∑

a∈{0,1}V (G)
x rk(A+diag(a))

with interesting properties: SG(0) = 1 if G is the empty graph, and SG(0) = 0 otherwise; SG(1) = 2|V (G)|, and
S′G (1)
SG (1)

gives the average rank of A + diag(a), as a varies over all possible vectors.

Corollary 4.

2|V (G)| ≤ s(G) ≤ 4|V (G)|.
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